kantundpeterpan's picture
ready
168eed2
raw
history blame
4.38 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import skops
from skops.hub_utils import download
from skops.io import load
import pandas as pd
from huggingface_hub import hf_hub_download
import joblib
REPO_ID = "kantundpeterpan/frugal-ai-toy"
FILENAME = "tfidf_rf.skops"
# import nltk
# from nltk.tokenize import WordPunctTokenizer
# from nltk.stem import WordNetLemmatizer
# from nltk.corpus import stopwords
# import string
# nltk.download('stopwords')
# stop = set(stopwords.words('english') + list(string.punctuation))
# def tokenize_quote(r):
# tokens = nltk.word_tokenize(r.lower())
# cleaned = [word for word in tokens if word not in stop]
# return cleaned
# def lemmatize_tokens(tokens: list):
# return [lemmatizer.lemmatize(t) for t in tokens]
# def lemmatize_X(X):
# return X.quote.apply(tokenize_quote).apply(lemmatize_tokens).apply(lambda x: " ".join(x))
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "tfidf-rf"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
test_df = pd.DataFrame(test_dataset)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
#download model
download(repo_id = "kantundpeterpan/frugal-ai-toy", dst = "skops_test")
#get unknwown types
unknown = skops.io.get_untrusted_types(file = "skops_test/tfidf_rf.skops")
#load model
model = model = load("skops_test/tfidf_rf.skops", trusted = unknown)
# Make predictions
true_labels = test_dataset["label"]
predictions = [
LABEL_MAPPING[r] for r in model.predict(test_dataset)
]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results