File size: 4,378 Bytes
4d6e8c2
 
 
 
712302e
c200604
5b1f749
 
712302e
42ba4db
 
712302e
 
 
 
0b492aa
712302e
0b492aa
 
 
 
 
 
cb4572b
0b492aa
cb4572b
0b492aa
 
 
 
cb4572b
0b492aa
 
cb4572b
0b492aa
 
712302e
4d6e8c2
 
 
 
 
 
 
712302e
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168eed2
4d6e8c2
 
 
 
70f5f26
 
 
 
 
712302e
5b1f749
 
 
 
 
0b492aa
975e4ac
5b1f749
975e4ac
 
4d6e8c2
712302e
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score

import skops
from skops.hub_utils import download
from skops.io import load

import pandas as pd

from huggingface_hub import hf_hub_download
import joblib

REPO_ID = "kantundpeterpan/frugal-ai-toy"
FILENAME = "tfidf_rf.skops"

# import nltk
# from nltk.tokenize import WordPunctTokenizer
# from nltk.stem import WordNetLemmatizer
# from nltk.corpus import stopwords
# import string
# nltk.download('stopwords')

# stop = set(stopwords.words('english') + list(string.punctuation))

# def tokenize_quote(r):
#     tokens = nltk.word_tokenize(r.lower())
#     cleaned = [word for word in tokens if word not in stop]
#     return cleaned

# def lemmatize_tokens(tokens: list):
#     return [lemmatizer.lemmatize(t) for t in tokens]

# def lemmatize_X(X):
#     return X.quote.apply(tokenize_quote).apply(lemmatize_tokens).apply(lambda x: " ".join(x))

import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "tfidf-rf"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    test_df = pd.DataFrame(test_dataset)
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   

    
    #download model
    download(repo_id = "kantundpeterpan/frugal-ai-toy", dst = "skops_test")
    #get unknwown types
    unknown = skops.io.get_untrusted_types(file = "skops_test/tfidf_rf.skops")
    
    #load model
    model = model = load("skops_test/tfidf_rf.skops", trusted = unknown)
    
    # Make predictions
    true_labels = test_dataset["label"]
    predictions = [
        LABEL_MAPPING[r] for r in model.predict(test_dataset)    
    ]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results