|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
import uvicorn |
|
import prompt_style |
|
import os |
|
|
|
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF" |
|
model = Llama.from_pretrained(repo_id=model_id, filename="*-v3_q6.gguf", n_gpu_layers=-1, n_ctx=4096, verbose=False) |
|
|
|
|
|
|
|
|
|
class Item(BaseModel): |
|
prompt: str |
|
history: list |
|
system_prompt: str |
|
temperature: float = 0.6 |
|
max_new_tokens: int = 1024 |
|
top_p: float = 0.95 |
|
repetition_penalty: float = 1.0 |
|
seed : int = 42 |
|
|
|
app = FastAPI() |
|
|
|
def format_prompt(item: Item): |
|
messages = [ |
|
{"role": "system", "content": prompt_style.data}, |
|
] |
|
for it in history: |
|
messages.append({"role" : "user", "content": it[0]}) |
|
messages.append({"role" : "assistant", "content": it[1]}) |
|
messages.append({"role" : "user", "content": item.prompt}) |
|
return messages |
|
|
|
def generate(item: Item): |
|
formatted_prompt = format_prompt(item) |
|
output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed, |
|
temperature=item.temperature, |
|
max_tokens=item.max_new_tokens) |
|
|
|
|
|
out = output['choices'][0]['message']['content'] |
|
return out |
|
|
|
@app.post("/generate/") |
|
async def generate_text(item: Item): |
|
ans = generate(item) |
|
return {"response": ans} |
|
|
|
|
|
@app.get("/") |
|
def read_root(): |
|
return {"Hello": "World!"} |