kamran-r123's picture
Update main.py
f79168b verified
raw
history blame
1.59 kB
from fastapi import FastAPI
from pydantic import BaseModel
from llama_cpp import Llama
import uvicorn
import prompt_style
import os
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
model = Llama.from_pretrained(repo_id=model_id, filename="*-v3_q6.gguf", n_gpu_layers=-1, n_ctx=4096, verbose=False)
# model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
# client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id)
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.6
max_new_tokens: int = 1024
top_p: float = 0.95
repetition_penalty: float = 1.0
seed : int = 42
app = FastAPI()
def format_prompt(item: Item):
messages = [
{"role": "system", "content": prompt_style.data},
]
for it in history:
messages.append({"role" : "user", "content": it[0]})
messages.append({"role" : "assistant", "content": it[1]})
messages.append({"role" : "user", "content": item.prompt})
return messages
def generate(item: Item):
formatted_prompt = format_prompt(item)
output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed,
temperature=item.temperature,
max_tokens=item.max_new_tokens)
out = output['choices'][0]['message']['content']
return out
@app.post("/generate/")
async def generate_text(item: Item):
ans = generate(item)
return {"response": ans}
@app.get("/")
def read_root():
return {"Hello": "World!"}