Update main.py
Browse files
main.py
CHANGED
@@ -1,19 +1,20 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
4 |
import uvicorn
|
5 |
import prompt_style
|
6 |
import os
|
7 |
|
|
|
|
|
8 |
|
9 |
-
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
|
10 |
-
client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id)
|
11 |
|
12 |
class Item(BaseModel):
|
13 |
prompt: str
|
14 |
history: list
|
15 |
system_prompt: str
|
16 |
-
token:str
|
17 |
temperature: float = 0.6
|
18 |
max_new_tokens: int = 1024
|
19 |
top_p: float = 0.95
|
@@ -26,33 +27,21 @@ def format_prompt(item: Item):
|
|
26 |
messages = [
|
27 |
{"role": "system", "content": prompt_style.data},
|
28 |
]
|
29 |
-
for it in
|
30 |
-
messages.append
|
31 |
-
messages.append
|
|
|
32 |
return messages
|
33 |
|
34 |
def generate(item: Item):
|
35 |
-
temperature = float(item.temperature)
|
36 |
-
if temperature < 1e-2:
|
37 |
-
temperature = 1e-2
|
38 |
-
top_p = float(item.top_p)
|
39 |
-
|
40 |
-
generate_kwargs = dict(
|
41 |
-
temperature=temperature,
|
42 |
-
max_new_tokens=item.max_new_tokens,
|
43 |
-
top_p=top_p,
|
44 |
-
repetition_penalty=item.repetition_penalty,
|
45 |
-
do_sample=True,
|
46 |
-
seed=item.seed,
|
47 |
-
)
|
48 |
-
|
49 |
formatted_prompt = format_prompt(item)
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
return output
|
56 |
|
57 |
@app.post("/generate/")
|
58 |
async def generate_text(item: Item):
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
+
from llama_cpp import Llama
|
4 |
import uvicorn
|
5 |
import prompt_style
|
6 |
import os
|
7 |
|
8 |
+
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
|
9 |
+
model = Llama.from_pretrained(repo_id=model_id, filename="*-v3_q6.gguf", n_gpu_layers=-1, n_ctx=4096, verbose=False)
|
10 |
|
11 |
+
# model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
|
12 |
+
# client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id)
|
13 |
|
14 |
class Item(BaseModel):
|
15 |
prompt: str
|
16 |
history: list
|
17 |
system_prompt: str
|
|
|
18 |
temperature: float = 0.6
|
19 |
max_new_tokens: int = 1024
|
20 |
top_p: float = 0.95
|
|
|
27 |
messages = [
|
28 |
{"role": "system", "content": prompt_style.data},
|
29 |
]
|
30 |
+
for it in history:
|
31 |
+
messages.append({"role" : "user", "content": it[0]})
|
32 |
+
messages.append({"role" : "assistant", "content": it[1]})
|
33 |
+
messages.append({"role" : "user", "content": item.prompt})
|
34 |
return messages
|
35 |
|
36 |
def generate(item: Item):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
formatted_prompt = format_prompt(item)
|
38 |
+
output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed,
|
39 |
+
temperature=item.temperature,
|
40 |
+
max_tokens=item.max_new_tokens)
|
41 |
+
|
42 |
|
43 |
+
out = output['choices'][0]['message']['content']
|
44 |
+
return out
|
|
|
45 |
|
46 |
@app.post("/generate/")
|
47 |
async def generate_text(item: Item):
|