File size: 1,606 Bytes
bee5263
 
f79168b
bee5263
3fbd422
a58b418
bab92d5
3fbd422
bee5263
bab92d5
f0a5811
 
bee5263
 
 
 
 
dbcfd8e
 
 
29fbbe7
dbcfd8e
 
 
bee5263
3fbd422
 
 
 
f79168b
 
 
 
3fbd422
bee5263
 
3fbd422
f79168b
 
 
 
3fbd422
f79168b
 
bee5263
 
 
fff1df0
f6819c7
 
 
 
 
bab92d5
f0a5811
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from fastapi import FastAPI
from pydantic import BaseModel
from llama_cpp import Llama
import uvicorn
import prompt_style
import os
from huggingface_hub import hf_hub_download


model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
model_path = hf_hub_download(repo_id=model_id, filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf", token=os.environ['HF_TOKEN'])
model = Llama(model_path=model_path, n_gpu_layers=-1, n_ctx=4096, verbose=False)

class Item(BaseModel):
    prompt: str
    history: list
    system_prompt: str
    temperature: float = 0.6
    max_new_tokens: int = 1024
    top_p: float = 0.95
    repetition_penalty: float = 1.0
    seed : int = 42
    
app = FastAPI()

def format_prompt(item: Item):
    messages = [
        {"role": "system", "content": prompt_style.data},
    ]
    for it in history:
        messages.append({"role" : "user", "content": it[0]})
        messages.append({"role" : "assistant", "content": it[1]})
    messages.append({"role" : "user", "content": item.prompt})
    return messages

def generate(item: Item):
    formatted_prompt = format_prompt(item)
    output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed, 
                                          temperature=item.temperature,
                                          max_tokens=item.max_new_tokens)


    out = output['choices'][0]['message']['content']
    return out

@app.post("/generate/")
async def generate_text(item: Item):
    ans = generate(item)
    return {"response": ans}


@app.get("/")
def read_root():
    
    return {"Hello": "Worlds"}