|
# Pretrain Example |
|
|
|
> \[!IMPORTANT\] |
|
> Data must be used in conjunction with the corresponding map_fn. |
|
|
|
## Data |
|
|
|
`./data.json` |
|
|
|
```json |
|
[{ |
|
"toy_text": "I am an artificial intelligence (AI) assistant named InternLM. I was created by the Shanghai AI Laboratory and my purpose is to assist users with various tasks through natural language processing technology." |
|
}, |
|
{ |
|
"toy_text": "I am an artificial intelligence programmed to assist with various types of tasks, including answering questions, providing information, and performing automated processes." |
|
}] |
|
``` |
|
|
|
## Map Function |
|
|
|
`./map_fn.py` |
|
|
|
```python |
|
def pretrain_map_fn(example): |
|
return { |
|
'conversation': [{ |
|
'input': '', |
|
'output': example['toy_text'].strip() |
|
}] |
|
} |
|
``` |
|
|
|
## Config |
|
|
|
Based on [internlm_7b_qlora_json_e3](../../../xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_json_e3.py). |
|
|
|
```diff |
|
# Copyright (c) OpenMMLab. All rights reserved. |
|
import torch |
|
from datasets import load_dataset |
|
+ from mmengine.config import read_base |
|
from mmengine.dataset import DefaultSampler |
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR |
|
from peft import LoraConfig |
|
from torch.optim import AdamW |
|
from transformers import (AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig) |
|
|
|
from xtuner.dataset import process_hf_dataset |
|
from xtuner.dataset.collate_fns import default_collate_fn |
|
-from xtuner.dataset.map_fns import template_map_fn_factory |
|
-from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook |
|
+from xtuner.engine.hooks import DatasetInfoHook |
|
from xtuner.engine.runner import TrainLoop |
|
from xtuner.model import SupervisedFinetune |
|
-from xtuner.utils import PROMPT_TEMPLATE |
|
|
|
+with read_base(): |
|
+ from .map_fn import single_turn_map_fn as dataset_map_fn |
|
+ |
|
####################################################################### |
|
# PART 1 Settings # |
|
####################################################################### |
|
# Model |
|
pretrained_model_name_or_path = 'internlm/internlm-7b' |
|
|
|
# Data |
|
-data_path = 'path/to/your/json_data' |
|
+data_path = './data.json' |
|
-prompt_template = PROMPT_TEMPLATE.default |
|
max_length = 2048 |
|
pack_to_max_length = True |
|
|
|
# Scheduler & Optimizer |
|
batch_size = 1 # per_device |
|
accumulative_counts = 16 |
|
dataloader_num_workers = 0 |
|
max_epochs = 3 |
|
optim_type = AdamW |
|
lr = 2e-4 |
|
betas = (0.9, 0.999) |
|
weight_decay = 0 |
|
max_norm = 1 # grad clip |
|
|
|
# Save |
|
save_steps = 500 |
|
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) |
|
|
|
# Evaluate the generation performance during the training |
|
evaluation_freq = 500 |
|
SYSTEM = '' |
|
evaluation_inputs = [ |
|
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai' |
|
] |
|
|
|
####################################################################### |
|
# PART 2 Model & Tokenizer # |
|
####################################################################### |
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
model = dict( |
|
type=SupervisedFinetune, |
|
llm=dict( |
|
type=AutoModelForCausalLM.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
quantization_config=dict( |
|
type=BitsAndBytesConfig, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4')), |
|
lora=dict( |
|
type=LoraConfig, |
|
r=64, |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
bias='none', |
|
task_type='CAUSAL_LM')) |
|
|
|
####################################################################### |
|
# PART 3 Dataset & Dataloader # |
|
####################################################################### |
|
train_dataset = dict( |
|
type=process_hf_dataset, |
|
dataset=dict( |
|
type=load_dataset, path='json', data_files=dict(train=data_path)), |
|
tokenizer=tokenizer, |
|
max_length=max_length, |
|
+ dataset_map_fn=dataset_map_fn, |
|
- template_map_fn=dict( |
|
- type=template_map_fn_factory, template=prompt_template), |
|
+ template_map_fn=None, |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
pack_to_max_length=pack_to_max_length) |
|
|
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=train_dataset, |
|
sampler=dict(type=DefaultSampler, shuffle=True), |
|
collate_fn=dict(type=default_collate_fn)) |
|
|
|
####################################################################### |
|
# PART 4 Scheduler & Optimizer # |
|
####################################################################### |
|
# optimizer |
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='float16') |
|
|
|
# learning policy |
|
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 |
|
param_scheduler = dict( |
|
type=CosineAnnealingLR, |
|
eta_min=0.0, |
|
by_epoch=True, |
|
end=max_epochs, |
|
convert_to_iter_based=True) |
|
|
|
# train, val, test setting |
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) |
|
|
|
####################################################################### |
|
# PART 5 Runtime # |
|
####################################################################### |
|
# Log the dialogue periodically during the training process, optional |
|
-custom_hooks = [ |
|
- dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
- dict( |
|
- type=EvaluateChatHook, |
|
- tokenizer=tokenizer, |
|
- every_n_iters=evaluation_freq, |
|
- evaluation_inputs=evaluation_inputs, |
|
- system=SYSTEM, |
|
- prompt_template=prompt_template) |
|
-] |
|
+custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer)] |
|
|
|
# configure default hooks |
|
default_hooks = dict( |
|
# record the time of every iteration. |
|
timer=dict(type=IterTimerHook), |
|
# print log every 10 iterations. |
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), |
|
# enable the parameter scheduler. |
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
# save checkpoint per `save_steps`. |
|
checkpoint=dict( |
|
type=CheckpointHook, |
|
by_epoch=False, |
|
interval=save_steps, |
|
max_keep_ckpts=save_total_limit), |
|
# set sampler seed in distributed evrionment. |
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
# configure environment |
|
env_cfg = dict( |
|
# whether to enable cudnn benchmark |
|
cudnn_benchmark=False, |
|
# set multi process parameters |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
# set distributed parameters |
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
# set visualizer |
|
visualizer = None |
|
|
|
# set log level |
|
log_level = 'INFO' |
|
|
|
# load from which checkpoint |
|
load_from = None |
|
|
|
# whether to resume training from the loaded checkpoint |
|
resume = False |
|
|
|
# Defaults to use random seed and disable `deterministic` |
|
randomness = dict(seed=None, deterministic=False) |
|
|
|
# set log processor |
|
log_processor = dict(by_epoch=False) |
|
``` |
|
|
|
## Quick Start |
|
|
|
```bash |
|
cd ./examples/demo_data/pretrain |
|
xtuner train config.py |
|
``` |
|
|