File size: 3,030 Bytes
a426d06 d7b2ea0 a426d06 8384356 a426d06 ded1a34 a426d06 d7b2ea0 a426d06 8384356 a426d06 d7b2ea0 8384356 d7b2ea0 18d078a d7b2ea0 9ba935a a426d06 d7b2ea0 a426d06 d7b2ea0 a426d06 d7b2ea0 a426d06 d7b2ea0 a426d06 9b3d99a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import io
from flask import Flask, request, jsonify
import base64
import pytesseract
import numpy as np
from pickle import load
from PIL import Image
from keras.applications.xception import Xception # to get pre-trained model Xception
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
app = Flask(__name__)
MAX_LENGTH = 34
def format_tesseract_output(output_text):
formatted_text = ""
lines = output_text.strip().split("\n")
for line in lines:
line = line.strip()
if line:
formatted_text += line + "\n"
return formatted_text
def extract_features(image_data, model):
try:
image = Image.open(io.BytesIO(image_data))
except Exception as e:
return None
image = image.resize((299,299))
image = np.array(image)
# convert 4 channels image into 3 channels
if image.shape[2] == 4:
image = image[..., :3]
image = np.expand_dims(image, axis=0)
image = image/127.5
image = image - 1.0
feature = model.predict(image)
return feature
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
def generate_desc(model, tokenizer, photo, max_length):
in_text = 'start'
for i in range(max_length):
sequence = tokenizer.texts_to_sequences([in_text])[0]
sequence = pad_sequences([sequence], maxlen=max_length)
pred = model.predict([photo,sequence], verbose=0)
pred = np.argmax(pred)
word = word_for_id(pred, tokenizer)
if word is None or word == 'end':
break
in_text += ' ' + word
return in_text.replace('start ', '')
# API endpoint to receive image and generate caption
@app.route('/api', methods=['POST'])
def generate_caption():
try:
base64_image_data = request.form['image']
# Decode the Base64 string into binary image data
image_data = base64.b64decode(base64_image_data)
# Convert the image data to a PIL image object
pil_image = Image.open(io.BytesIO(image_data))
extracted_text = pytesseract.image_to_string(pil_image, lang="eng+chi_sim+msa")
hasText = bool(extracted_text.strip())
if hasText:
result = format_tesseract_output(extracted_text)
else:
tokenizer = load(open("tokenizer.p","rb"))
model = load_model('model.keras')
xception_model = Xception(include_top=False, pooling="avg")
photo = extract_features(image_data, xception_model)
if photo is None:
return jsonify({'error': 'Failed to extract features from the image'}), 400
result = generate_desc(model, tokenizer, photo, MAX_LENGTH)
return jsonify({'hasText': hasText, 'result': result}), 200
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run()
|