Add text extraction
Browse files
main.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import io
|
2 |
from flask import Flask, request, jsonify
|
3 |
import base64
|
|
|
4 |
import numpy as np
|
5 |
from pickle import load
|
6 |
from PIL import Image
|
@@ -12,6 +13,16 @@ app = Flask(__name__)
|
|
12 |
|
13 |
MAX_LENGTH = 38
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def extract_features(image_data, model):
|
16 |
try:
|
17 |
image = Image.open(io.BytesIO(image_data))
|
@@ -65,19 +76,27 @@ def generate_caption():
|
|
65 |
# Decode the Base64 string into binary image data
|
66 |
image_data = base64.b64decode(base64_image_data)
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
return jsonify({'caption': caption}), 200
|
81 |
except Exception as e:
|
82 |
return jsonify({'error': str(e)}), 500
|
83 |
|
|
|
1 |
import io
|
2 |
from flask import Flask, request, jsonify
|
3 |
import base64
|
4 |
+
import pytesseract
|
5 |
import numpy as np
|
6 |
from pickle import load
|
7 |
from PIL import Image
|
|
|
13 |
|
14 |
MAX_LENGTH = 38
|
15 |
|
16 |
+
def format_tesseract_output(output_text):
|
17 |
+
formatted_text = ""
|
18 |
+
lines = output_text.strip().split("\n")
|
19 |
+
for line in lines:
|
20 |
+
line = line.strip()
|
21 |
+
if line:
|
22 |
+
formatted_text += line + "\n"
|
23 |
+
return formatted_text
|
24 |
+
|
25 |
+
|
26 |
def extract_features(image_data, model):
|
27 |
try:
|
28 |
image = Image.open(io.BytesIO(image_data))
|
|
|
76 |
# Decode the Base64 string into binary image data
|
77 |
image_data = base64.b64decode(base64_image_data)
|
78 |
|
79 |
+
# Convert the image data to a PIL image object
|
80 |
+
pil_image = Image.open(io.BytesIO(img_path))
|
81 |
+
|
82 |
+
extracted_text = pytesseract.image_to_string(pil_image, lang="eng+chi_sim+msa")
|
83 |
+
hasText = bool(extracted_text.strip())
|
84 |
+
|
85 |
+
if hasText:
|
86 |
+
result = format_tesseract_output(extracted_text)
|
87 |
+
else:
|
88 |
+
tokenizer = load(open("tokenizer.p","rb"))
|
89 |
+
model = load_model('model_9.keras')
|
90 |
|
91 |
+
xception_model = Xception(include_top=False, pooling="avg")
|
92 |
+
photo = extract_features(image_data, xception_model)
|
93 |
|
94 |
+
if photo is None:
|
95 |
+
return jsonify({'error': 'Failed to extract features from the image'}), 400
|
96 |
|
97 |
+
result = generate_desc(model, tokenizer, photo, MAX_LENGTH)
|
98 |
|
99 |
+
return jsonify({'hasText': hasText, 'result': result}), 200
|
|
|
100 |
except Exception as e:
|
101 |
return jsonify({'error': str(e)}), 500
|
102 |
|