File size: 6,122 Bytes
d14e05c
76adb70
 
 
d14e05c
 
7439234
 
d14e05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c8492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d14e05c
76adb70
 
a6574e1
 
76adb70
d14e05c
 
 
 
 
 
7439234
 
 
 
 
 
d14e05c
f99f7da
76adb70
d14e05c
76adb70
 
 
 
 
 
 
 
 
81c8492
 
 
 
76adb70
81c8492
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e326d
76adb70
 
 
 
50e326d
 
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
81c8492
76adb70
 
 
 
 
 
81c8492
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c112b68
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

import gradio as gr
from ultralytics import YOLO
import spaces
import supervision as sv

BOX_ANNOTATOR = sv.BoxAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()

category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}


def attempt_download_from_hub(repo_id, hf_token=None):
    # https://github.com/fcakyon/yolov5-pip/blob/main/yolov5/utils/downloads.py
    from huggingface_hub import hf_hub_download, list_repo_files
    from huggingface_hub.utils._errors import RepositoryNotFoundError
    from huggingface_hub.utils._validators import HFValidationError
    try:
        repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token)
        model_file = [f for f in repo_files if f.endswith('.pt')][0]
        file = hf_hub_download(
            repo_id=repo_id,
            filename=model_file,
            repo_type='model',
            token=hf_token,
        )
        return file
    except (RepositoryNotFoundError, HFValidationError):
        return None


@spaces.GPU(duration=200)
def LeYOLO_inference(image, model_id, image_size, conf_threshold, iou_threshold):
    MODEL_PATH = attempt_download_from_hub(model_id)
    model = model = YOLO(MODEL_PATH)
    results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results)
    
    labels = [
        f"{category_dict[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]
    

    annotated_image = BOX_ANNOTATOR.annotate(
        scene=image, detections=detections)
    annotated_image = LABEL_ANNOTATOR.annotate(
        scene=annotated_image, detections=detections, labels=labels)

    return annotated_image
    

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image")
                
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "kadirnar/LeYOLOSmall",
                        "kadirnar/LeYOLONano",
                        "kadirnar/LeYOLOMedium",
                        "kadirnar/LeYOLOLarge",
                    ],
                    value="kadirnar/LeYOLOMedium",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.45,
                )
                LeYOLO_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="pil", label="Annotated Image")

        LeYOLO_infer.click(
            fn=LeYOLO_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
        )

        gr.Examples(
            examples=[
                [
                    "dog.jpeg",
                    "kadirnar/LeYOLOMedium",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "zidane.jpg",
                    "kadirnar/LeYOLOMedium",
                    640,
                    0.25,
                    0.45,
                ],
            ],
            fn=LeYOLO_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
            cache_examples="lazy",
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>  | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)