kadirnar commited on
Commit
f99f7da
·
verified ·
1 Parent(s): 10297b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -8
app.py CHANGED
@@ -1,11 +1,45 @@
1
  import gradio as gr
2
  from ultralytics import YOLO
3
  import spaces
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  @spaces.GPU(duration=200)
6
  def LeYOLO_inference(image, model_id, image_size, conf_threshold, iou_threshold):
7
- model = YOLO(f"{model_id}.pt")
 
8
  results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
 
 
 
 
 
 
 
 
 
9
 
10
 
11
  def app():
@@ -17,14 +51,12 @@ def app():
17
  model_id = gr.Dropdown(
18
  label="Model",
19
  choices=[
20
- "yolov10n",
21
- "yolov10s",
22
- "yolov10m",
23
- "yolov10b",
24
- "yolov10l",
25
- "yolov10x",
26
  ],
27
- value="yolov10m",
28
  )
29
  image_size = gr.Slider(
30
  label="Image Size",
 
1
  import gradio as gr
2
  from ultralytics import YOLO
3
  import spaces
4
+ import supervision as sv
5
+
6
+
7
+
8
+ box_annotator = sv.BoxAnnotator()
9
+
10
+ category_dict = {
11
+ 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
12
+ 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
13
+ 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
14
+ 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
15
+ 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
16
+ 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
17
+ 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
18
+ 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
19
+ 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
20
+ 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
21
+ 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
22
+ 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
23
+ 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
24
+ 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
25
+ 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
26
+ 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
27
+ }
28
 
29
  @spaces.GPU(duration=200)
30
  def LeYOLO_inference(image, model_id, image_size, conf_threshold, iou_threshold):
31
+ model_path = download_models(model_id)
32
+ model = model = YOLO(f"kadirnar/{model_id}")
33
  results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
34
+ detections = sv.Detections.from_ultralytics(results)
35
+
36
+ labels = [
37
+ f"{category_dict[class_id]} {confidence:.2f}"
38
+ for class_id, confidence in zip(detections.class_id, detections.confidence)
39
+ ]
40
+ annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
41
+
42
+ return annotated_image
43
 
44
 
45
  def app():
 
51
  model_id = gr.Dropdown(
52
  label="Model",
53
  choices=[
54
+ "LeYOLOSmall",
55
+ "LeYOLONano",
56
+ "LeYOLOMedium",
57
+ "LeYOLOLarge",
 
 
58
  ],
59
+ value="LeYOLOMedium",
60
  )
61
  image_size = gr.Slider(
62
  label="Image Size",