File size: 5,284 Bytes
76adb70
 
 
f99f7da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76adb70
 
 
f99f7da
 
76adb70
f99f7da
 
 
 
 
 
 
 
 
76adb70
 
 
 
 
 
 
 
 
 
 
f99f7da
 
 
 
76adb70
f99f7da
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50e326d
76adb70
 
 
 
50e326d
 
76adb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
from ultralytics import YOLO
import spaces
import supervision as sv



box_annotator = sv.BoxAnnotator()

category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}

@spaces.GPU(duration=200)
def LeYOLO_inference(image, model_id, image_size, conf_threshold, iou_threshold):
    model_path = download_models(model_id)
    model = model = YOLO(f"kadirnar/{model_id}")
    results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results)
    
    labels = [
        f"{category_dict[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]
    annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)

    return annotated_image
    

def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image")
                
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "LeYOLOSmall",
                        "LeYOLONano",
                        "LeYOLOMedium",
                        "LeYOLOLarge",
                    ],
                    value="LeYOLOMedium",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.45,
                )
                LeYOLO_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="pil", label="Annotated Image")

        LeYOLO_infer.click(
            fn=LeYOLO_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
        )

        gr.Examples(
            examples=[
                [
                    "dog.jpeg",
                    "yolov10x",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "huggingface.jpg",
                    "yolov10m",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "zidane.jpg",
                    "yolov10b",
                    640,
                    0.25,
                    0.45,
                ],
            ],
            fn=LeYOLO_inference,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
            cache_examples="lazy",
        )

gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        Follow me for more!
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>  | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

gradio_app.launch(debug=True)