File size: 4,464 Bytes
3d5d6c3
e4014ea
 
 
8166181
3d87864
8166181
e4014ea
8166181
3d87864
e4014ea
3d87864
e4014ea
3d87864
e4014ea
 
 
 
e79ed56
e4014ea
 
 
 
 
 
 
 
3d87864
e4014ea
 
 
8166181
3d87864
 
 
 
 
 
 
 
 
 
 
e4014ea
3d87864
e4014ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d87864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4014ea
 
 
 
 
 
 
 
 
 
 
 
3d87864
e4014ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d87864
 
 
 
e4014ea
 
 
 
 
3d87864
 
 
8166181
 
3d87864
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import AuraFlowPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize the AuraFlow v0.3 pipeline
pipe = AuraFlowPipeline.from_pretrained(
    "fal/AuraFlow-v0.3",
    torch_dtype=torch.float16
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(prompt,
          negative_prompt="",
          seed=42,
          randomize_seed=False,
          width=1024,
          height=1024,
          guidance_scale=5.0,
          num_inference_steps=28,
          progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        generator=generator
    ).images[0]
        
    return image, seed

examples = [
    "A photo of a lavender cat",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(
            """
            <h1 style='text-align: center'>
            AuraFlow v0.3
            </h1>
            """
        )
        gr.HTML(
            """
            <h3 style='text-align: center'>
            Follow me for more!
            <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>  | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
            </h3>
            """
        )
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit, negative_prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.queue().launch()