Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from diffusers import AuraFlowPipeline
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
def initialize_auraflow_pipeline():
|
7 |
+
"""Initialize and return the AuraFlowPipeline."""
|
8 |
+
pipeline = AuraFlowPipeline.from_pretrained(
|
9 |
+
"fal/AuraFlow-v0.3",
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
variant="fp16",
|
12 |
+
).to("cuda")
|
13 |
+
return pipeline
|
14 |
+
|
15 |
+
def generate_image(pipeline, prompt, width, height, num_inference_steps, seed, guidance_scale):
|
16 |
+
"""Generate an image using the AuraFlowPipeline."""
|
17 |
+
generator = torch.Generator().manual_seed(seed)
|
18 |
+
|
19 |
+
image = pipeline(
|
20 |
+
prompt=prompt,
|
21 |
+
width=width,
|
22 |
+
height=height,
|
23 |
+
num_inference_steps=num_inference_steps,
|
24 |
+
generator=generator,
|
25 |
+
guidance_scale=guidance_scale,
|
26 |
+
).images[0]
|
27 |
+
|
28 |
+
return image
|
29 |
+
|
30 |
+
# Initialize the pipeline once
|
31 |
+
auraflow_pipeline = initialize_auraflow_pipeline()
|
32 |
+
|
33 |
+
# Gradio interface
|
34 |
+
def gradio_generate_image(prompt, width, height, num_inference_steps, seed, guidance_scale):
|
35 |
+
return generate_image(auraflow_pipeline, prompt, width, height, num_inference_steps, seed, guidance_scale)
|
36 |
+
|
37 |
+
# Create Gradio Blocks
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("# AuraFlow Image Generation")
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column():
|
43 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your image prompt here...")
|
44 |
+
width_input = gr.Slider(minimum=512, maximum=2048, step=64, value=1536, label="Width")
|
45 |
+
height_input = gr.Slider(minimum=512, maximum=2048, step=64, value=768, label="Height")
|
46 |
+
steps_input = gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Number of Inference Steps")
|
47 |
+
seed_input = gr.Number(label="Seed", value=1)
|
48 |
+
guidance_input = gr.Slider(minimum=1, maximum=10, step=0.1, value=3.5, label="Guidance Scale")
|
49 |
+
generate_btn = gr.Button("Generate Image")
|
50 |
+
|
51 |
+
with gr.Column():
|
52 |
+
image_output = gr.Image(label="Generated Image")
|
53 |
+
|
54 |
+
generate_btn.click(
|
55 |
+
fn=gradio_generate_image,
|
56 |
+
inputs=[prompt_input, width_input, height_input, steps_input, seed_input, guidance_input],
|
57 |
+
outputs=image_output
|
58 |
+
)
|
59 |
+
|
60 |
+
# Launch the Gradio interface
|
61 |
+
demo.launch()
|