semantic-demo / app.py
jwalanthi's picture
more tabs
923ec13
raw
history blame
1.7 kB
import gradio as gr
import torch
from minicons import cwe
from huggingface_hub import hf_hub_download
import os
from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams
def predict (Word, Sentence, modelname):
models = {'Bert Layer 8 to Binder': ('bert-base-uncased', 'bert8_to_binder'),
'Albert Layer 8 to Binder': ('albert-xxlarge-v2', 'albert8_to_binder_opt_stop')}
if Word not in Sentence: return "invalid input: word not in sentence"
model_name = models[modelname][1]
lm = cwe.CWE(models[modelname][0])
model_path = hf_hub_download("jwalanthi/semantic-feature-classifiers", model_name+".ckpt", use_auth_token=os.environ['TOKEN'])
label_path = hf_hub_download("jwalanthi/semantic-feature-classifiers", model_name+".txt", use_auth_token=os.environ['TOKEN'])
model = FeatureNormPredictor.load_from_checkpoint(
checkpoint_path=model_path,
map_location=None
)
model.eval()
with open (label_path, "r") as file:
labels = [line.rstrip() for line in file.readlines()]
data = (Sentence, Word)
emb = lm.extract_representation(data, layer=8)
pred = torch.nn.functional.relu(model(emb))
pred = pred.squeeze(0)
pred_list = pred.detach().numpy().tolist()
output = [labels[i]+'\t\t\t\t\t\t\t'+str(pred_list[i]) for i in range(len(labels)) if pred_list[i] > 0.0]
return "All Positive Predicted Values:\n"+"\n".join(output)
demo = gr.Interface(
fn=predict,
inputs=[
"text",
"text",
gr.Radio(["Bert Layer 8 to Binder", "Albert Layer 8 to Binder"])
],
outputs=["text"],
)
demo.launch()
if __name__ == "__main__":
demo.launch()