import gradio as gr import torch from minicons import cwe from huggingface_hub import hf_hub_download import os from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams def predict (Word, Sentence, modelname): models = {'Bert Layer 8 to Binder': ('bert-base-uncased', 'bert8_to_binder'), 'Albert Layer 8 to Binder': ('albert-xxlarge-v2', 'albert8_to_binder_opt_stop')} if Word not in Sentence: return "invalid input: word not in sentence" model_name = models[modelname][1] lm = cwe.CWE(models[modelname][0]) model_path = hf_hub_download("jwalanthi/semantic-feature-classifiers", model_name+".ckpt", use_auth_token=os.environ['TOKEN']) label_path = hf_hub_download("jwalanthi/semantic-feature-classifiers", model_name+".txt", use_auth_token=os.environ['TOKEN']) model = FeatureNormPredictor.load_from_checkpoint( checkpoint_path=model_path, map_location=None ) model.eval() with open (label_path, "r") as file: labels = [line.rstrip() for line in file.readlines()] data = (Sentence, Word) emb = lm.extract_representation(data, layer=8) pred = torch.nn.functional.relu(model(emb)) pred = pred.squeeze(0) pred_list = pred.detach().numpy().tolist() output = [labels[i]+'\t\t\t\t\t\t\t'+str(pred_list[i]) for i in range(len(labels)) if pred_list[i] > 0.0] return "All Positive Predicted Values:\n"+"\n".join(output) demo = gr.Interface( fn=predict, inputs=[ "text", "text", gr.Radio(["Bert Layer 8 to Binder", "Albert Layer 8 to Binder"]) ], outputs=["text"], ) demo.launch() if __name__ == "__main__": demo.launch()