Spaces:
Sleeping
Sleeping
File size: 1,889 Bytes
91dba4d 99ad741 5288696 2ffd102 6de72ef 541d16e 5288696 ccb6ea2 ef7044d f50f2ed ccb6ea2 f50f2ed ccb6ea2 ef7044d ccb6ea2 2ffd102 541d16e 2ffd102 541d16e 2ffd102 541d16e f50f2ed 923ec13 541d16e 91dba4d 5288696 6de72ef ef7044d 63c7e9c 6de72ef 91dba4d 923ec13 541d16e 923ec13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
import torch
from minicons import cwe
from huggingface_hub import hf_hub_download
import os
from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams
def predict (Word, Sentence, LLM, Norm, Layer):
models = {'BERT': 'bert-base-uncased',
'ALBERT': 'albert-xxlarge-v2',
'roBERTa': 'roberta-base'}
if Word not in Sentence: return "invalid input: word not in sentence"
model_name_hf = LLM.lower()
norm_name_hf = Norm.lower()
lm = cwe.CWE(models[LLM])
repo_id = "jwalanthi/semantic-feature-classifiers"
subfolder = "{model_name_hf}_models_all"
name_hf = f"{model_name_hf}_to_{norm_name_hf}_layer{Layer}"
model_path = hf_hub_download(repo_id = repo_id, subfolder=subfolder, filename=f"{name_hf}.ckpt", use_auth_token=os.environ['TOKEN'])
label_path = hf_hub_download(repo_id = repo_id, subfolder=subfolder, filename=f"{name_hf}.txt", use_auth_token=os.environ['TOKEN'])
model = FeatureNormPredictor.load_from_checkpoint(
checkpoint_path=model_path,
map_location=None
)
model.eval()
with open (label_path, "r") as file:
labels = [line.rstrip() for line in file.readlines()]
data = (Sentence, Word)
emb = lm.extract_representation(data, layer=8)
pred = torch.nn.functional.relu(model(emb))
pred = pred.squeeze(0)
pred_list = pred.detach().numpy().tolist()
output = [labels[i]+'\t\t\t\t\t\t\t'+str(pred_list[i]) for i in range(len(labels)) if pred_list[i] > 0.0]
return "All Positive Predicted Values:\n"+"\n".join(output)
demo = gr.Interface(
fn=predict,
inputs=[
"text",
"text",
gr.Radio(["BERT"]),
gr.Radio(["Binder", "McRae", "Buchanan"]),
gr.Slider(0,12, step=1)
],
outputs=["text"],
)
demo.launch()
if __name__ == "__main__":
demo.launch() |