File size: 1,889 Bytes
91dba4d
99ad741
5288696
2ffd102
 
6de72ef
541d16e
5288696
 
ccb6ea2
ef7044d
 
 
f50f2ed
ccb6ea2
 
 
f50f2ed
ccb6ea2
 
 
ef7044d
ccb6ea2
 
2ffd102
541d16e
2ffd102
541d16e
 
 
 
2ffd102
541d16e
 
 
 
 
 
 
f50f2ed
923ec13
541d16e
91dba4d
 
5288696
6de72ef
 
 
ef7044d
63c7e9c
 
6de72ef
91dba4d
 
 
923ec13
541d16e
 
923ec13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
from minicons import cwe
from huggingface_hub import hf_hub_download
import os

from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams


def predict (Word, Sentence, LLM, Norm, Layer):
    models = {'BERT': 'bert-base-uncased',
              'ALBERT': 'albert-xxlarge-v2',
              'roBERTa': 'roberta-base'}
    if Word not in Sentence: return "invalid input: word not in sentence"
    model_name_hf = LLM.lower()
    norm_name_hf = Norm.lower()
    lm = cwe.CWE(models[LLM])

    repo_id = "jwalanthi/semantic-feature-classifiers"
    subfolder = "{model_name_hf}_models_all"
    name_hf = f"{model_name_hf}_to_{norm_name_hf}_layer{Layer}"

    model_path = hf_hub_download(repo_id = repo_id, subfolder=subfolder, filename=f"{name_hf}.ckpt", use_auth_token=os.environ['TOKEN'])
    label_path = hf_hub_download(repo_id = repo_id, subfolder=subfolder, filename=f"{name_hf}.txt", use_auth_token=os.environ['TOKEN'])

    model = FeatureNormPredictor.load_from_checkpoint(
        checkpoint_path=model_path,
        map_location=None
    )
    model.eval()

    with open (label_path, "r") as file:
        labels = [line.rstrip() for line in file.readlines()]

    data = (Sentence, Word)
    emb = lm.extract_representation(data, layer=8)
    pred = torch.nn.functional.relu(model(emb))
    pred = pred.squeeze(0)
    pred_list = pred.detach().numpy().tolist()
    
    output = [labels[i]+'\t\t\t\t\t\t\t'+str(pred_list[i]) for i in range(len(labels)) if pred_list[i] > 0.0]
    return "All Positive Predicted Values:\n"+"\n".join(output)

demo = gr.Interface(
    fn=predict,
    inputs=[
        "text", 
        "text", 
        gr.Radio(["BERT"]),
        gr.Radio(["Binder", "McRae", "Buchanan"]),
        gr.Slider(0,12, step=1)
    ],
    outputs=["text"],
)

demo.launch()

if __name__ == "__main__":
    demo.launch()