Spaces:
Running
Running
more bert models
Browse files
app.py
CHANGED
@@ -7,15 +7,19 @@ import os
|
|
7 |
from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams
|
8 |
|
9 |
|
10 |
-
def predict (Word, Sentence,
|
11 |
-
models = {'
|
12 |
-
'
|
|
|
13 |
if Word not in Sentence: return "invalid input: word not in sentence"
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
model = FeatureNormPredictor.load_from_checkpoint(
|
21 |
checkpoint_path=model_path,
|
@@ -40,7 +44,9 @@ demo = gr.Interface(
|
|
40 |
inputs=[
|
41 |
"text",
|
42 |
"text",
|
43 |
-
gr.Radio(["
|
|
|
|
|
44 |
],
|
45 |
outputs=["text"],
|
46 |
)
|
|
|
7 |
from model import FFNModule, FeatureNormPredictor, FFNParams, TrainingParams
|
8 |
|
9 |
|
10 |
+
def predict (Word, Sentence, llm, norm, layer):
|
11 |
+
models = {'BERT': 'bert-base-uncased',
|
12 |
+
'ALBERT': 'albert-xxlarge-v2',
|
13 |
+
'roBERTa': 'roberta-base'}
|
14 |
if Word not in Sentence: return "invalid input: word not in sentence"
|
15 |
+
model_name_hf = llm.lower()
|
16 |
+
norm_name_hf = norm.lower()
|
17 |
+
lm = cwe.CWE(models[llm])
|
18 |
|
19 |
+
full_name_hf = f"jwalanthi/semantic-feature-classifiers/{model_name_hf}_models_all/{model_name_hf}_to_{norm_name_hf}_layer{layer}"
|
20 |
+
|
21 |
+
model_path = hf_hub_download(f"{full_name_hf}.ckpt", use_auth_token=os.environ['TOKEN'])
|
22 |
+
label_path = hf_hub_download(f"{full_name_hf}.txt", use_auth_token=os.environ['TOKEN'])
|
23 |
|
24 |
model = FeatureNormPredictor.load_from_checkpoint(
|
25 |
checkpoint_path=model_path,
|
|
|
44 |
inputs=[
|
45 |
"text",
|
46 |
"text",
|
47 |
+
gr.Radio(["BERT"]),
|
48 |
+
gr.Radio("Binder", "McRae", "Buchanan"),
|
49 |
+
gr.Slider(0,12)
|
50 |
],
|
51 |
outputs=["text"],
|
52 |
)
|