Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from torch_cluster import knn_graph | |
class DenseDilated(nn.Module): | |
""" | |
Find dilated neighbor from neighbor list | |
edge_index: (2, batch_size, num_points, k) | |
""" | |
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): | |
super(DenseDilated, self).__init__() | |
self.dilation = dilation | |
self.stochastic = stochastic | |
self.epsilon = epsilon | |
self.k = k | |
def forward(self, edge_index): | |
if self.stochastic: | |
if torch.rand(1) < self.epsilon and self.training: | |
num = self.k * self.dilation | |
randnum = torch.randperm(num)[:self.k] | |
edge_index = edge_index[:, :, :, randnum] | |
else: | |
edge_index = edge_index[:, :, :, ::self.dilation] | |
else: | |
edge_index = edge_index[:, :, :, ::self.dilation] | |
return edge_index | |
def pairwise_distance(x): | |
""" | |
Compute pairwise distance of a point cloud. | |
Args: | |
x: tensor (batch_size, num_points, num_dims) | |
Returns: | |
pairwise distance: (batch_size, num_points, num_points) | |
""" | |
x_inner = -2*torch.matmul(x, x.transpose(2, 1)) | |
x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True) | |
return x_square + x_inner + x_square.transpose(2, 1) | |
def dense_knn_matrix(x, k=16): | |
"""Get KNN based on the pairwise distance. | |
Args: | |
x: (batch_size, num_dims, num_points, 1) | |
k: int | |
Returns: | |
nearest neighbors: (batch_size, num_points ,k) (batch_size, num_points, k) | |
""" | |
with torch.no_grad(): | |
x = x.transpose(2, 1).squeeze(-1) | |
batch_size, n_points, n_dims = x.shape | |
_, nn_idx = torch.topk(-pairwise_distance(x.detach()), k=k) | |
center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1) | |
return torch.stack((nn_idx, center_idx), dim=0) | |
class DenseDilatedKnnGraph(nn.Module): | |
""" | |
Find the neighbors' indices based on dilated knn | |
""" | |
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): | |
super(DenseDilatedKnnGraph, self).__init__() | |
self.dilation = dilation | |
self.stochastic = stochastic | |
self.epsilon = epsilon | |
self.k = k | |
self._dilated = DenseDilated(k, dilation, stochastic, epsilon) | |
self.knn = dense_knn_matrix | |
def forward(self, x): | |
edge_index = self.knn(x, self.k * self.dilation) | |
return self._dilated(edge_index) | |
class DilatedKnnGraph(nn.Module): | |
""" | |
Find the neighbors' indices based on dilated knn | |
""" | |
def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): | |
super(DilatedKnnGraph, self).__init__() | |
self.dilation = dilation | |
self.stochastic = stochastic | |
self.epsilon = epsilon | |
self.k = k | |
self._dilated = DenseDilated(k, dilation, stochastic, epsilon) | |
self.knn = knn_graph | |
def forward(self, x): | |
x = x.squeeze(-1) | |
B, C, N = x.shape | |
edge_index = [] | |
for i in range(B): | |
edgeindex = self.knn(x[i].contiguous().transpose(1, 0).contiguous(), self.k * self.dilation) | |
edgeindex = edgeindex.view(2, N, self.k * self.dilation) | |
edge_index.append(edgeindex) | |
edge_index = torch.stack(edge_index, dim=1) | |
return self._dilated(edge_index) | |