import torch from torch import nn from torch_cluster import knn_graph class DenseDilated(nn.Module): """ Find dilated neighbor from neighbor list edge_index: (2, batch_size, num_points, k) """ def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): super(DenseDilated, self).__init__() self.dilation = dilation self.stochastic = stochastic self.epsilon = epsilon self.k = k def forward(self, edge_index): if self.stochastic: if torch.rand(1) < self.epsilon and self.training: num = self.k * self.dilation randnum = torch.randperm(num)[:self.k] edge_index = edge_index[:, :, :, randnum] else: edge_index = edge_index[:, :, :, ::self.dilation] else: edge_index = edge_index[:, :, :, ::self.dilation] return edge_index def pairwise_distance(x): """ Compute pairwise distance of a point cloud. Args: x: tensor (batch_size, num_points, num_dims) Returns: pairwise distance: (batch_size, num_points, num_points) """ x_inner = -2*torch.matmul(x, x.transpose(2, 1)) x_square = torch.sum(torch.mul(x, x), dim=-1, keepdim=True) return x_square + x_inner + x_square.transpose(2, 1) def dense_knn_matrix(x, k=16): """Get KNN based on the pairwise distance. Args: x: (batch_size, num_dims, num_points, 1) k: int Returns: nearest neighbors: (batch_size, num_points ,k) (batch_size, num_points, k) """ with torch.no_grad(): x = x.transpose(2, 1).squeeze(-1) batch_size, n_points, n_dims = x.shape _, nn_idx = torch.topk(-pairwise_distance(x.detach()), k=k) center_idx = torch.arange(0, n_points, device=x.device).repeat(batch_size, k, 1).transpose(2, 1) return torch.stack((nn_idx, center_idx), dim=0) class DenseDilatedKnnGraph(nn.Module): """ Find the neighbors' indices based on dilated knn """ def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): super(DenseDilatedKnnGraph, self).__init__() self.dilation = dilation self.stochastic = stochastic self.epsilon = epsilon self.k = k self._dilated = DenseDilated(k, dilation, stochastic, epsilon) self.knn = dense_knn_matrix def forward(self, x): edge_index = self.knn(x, self.k * self.dilation) return self._dilated(edge_index) class DilatedKnnGraph(nn.Module): """ Find the neighbors' indices based on dilated knn """ def __init__(self, k=9, dilation=1, stochastic=False, epsilon=0.0): super(DilatedKnnGraph, self).__init__() self.dilation = dilation self.stochastic = stochastic self.epsilon = epsilon self.k = k self._dilated = DenseDilated(k, dilation, stochastic, epsilon) self.knn = knn_graph def forward(self, x): x = x.squeeze(-1) B, C, N = x.shape edge_index = [] for i in range(B): edgeindex = self.knn(x[i].contiguous().transpose(1, 0).contiguous(), self.k * self.dilation) edgeindex = edgeindex.view(2, N, self.k * self.dilation) edge_index.append(edgeindex) edge_index = torch.stack(edge_index, dim=1) return self._dilated(edge_index)