jstoppa's picture
Create app.py
015df0f verified
import gradio as gr
from langgraph.graph import StateGraph
from typing import TypedDict, Annotated, List, Dict
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
import json
import requests
import os
from dotenv import load_dotenv
import time
# Load environment variables
load_dotenv()
# Define the state structure
class State(TypedDict):
messages: Annotated[list[SystemMessage | HumanMessage | AIMessage], add_messages]
current_step: str
code: str
style_analysis: Dict
security_analysis: Dict
performance_analysis: Dict
architecture_analysis: Dict
final_recommendations: Dict
def call_huggingface_api(prompt: str, max_retries=3) -> Dict:
"""Call Hugging Face API with retry logic and proper error handling."""
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
# You can change this to any model you prefer
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
headers = {"Authorization": f"Bearer {api_key}"}
for attempt in range(max_retries):
try:
response = requests.post(
API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": 1000,
"temperature": 0.7,
"top_p": 0.95,
"return_full_text": False
}
}
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
# Extract the generated text
text = result[0].get('generated_text', '')
# Try to parse as JSON if it contains JSON
try:
# Find JSON content between triple backticks if present
if "```json" in text:
json_str = text.split("```json")[1].split("```")[0].strip()
else:
json_str = text.strip()
return json.loads(json_str)
except json.JSONDecodeError:
return {"error": "Failed to parse JSON from response", "raw_text": text}
# If model is loading, wait and retry
if response.status_code == 503:
wait_time = 2 ** attempt
time.sleep(wait_time)
continue
except Exception as e:
if attempt == max_retries - 1:
return {"error": f"API call failed: {str(e)}"}
time.sleep(2 ** attempt)
return {"error": "Maximum retries reached"}
def analyze_code_style(state: State) -> dict:
"""Analyze code style and best practices."""
code = state["code"]
prompt = f"""You are a senior code reviewer focused on code style and best practices. Analyze this code:
{code}
Focus on:
1. Code readability and clarity
2. Adherence to common style guides
3. Variable/function naming
4. Code organization
5. Documentation quality
Provide your response in JSON format with these exact keys:
{{
"issues": ["list of identified style issues"],
"suggestions": ["list of improvement suggestions"],
"overall_rating": "1-10 score as a number",
"primary_concerns": ["list of main style concerns"]
}}"""
analysis = call_huggingface_api(prompt)
if "error" in analysis:
analysis = {
"issues": ["Error analyzing code style"],
"suggestions": ["Try again later"],
"overall_rating": 0,
"primary_concerns": ["Analysis failed"]
}
messages = state["messages"] + [AIMessage(content="Completed code style analysis")]
return {**state, "messages": messages, "style_analysis": analysis, "current_step": "security"}
def analyze_security(state: State) -> dict:
"""Analyze security vulnerabilities."""
code = state["code"]
prompt = f"""You are a security expert. Analyze this code for security vulnerabilities:
{code}
Focus on:
1. Input validation
2. Authentication/Authorization
3. Data exposure
4. Common vulnerabilities
5. Security best practices
Provide your response in JSON format with these exact keys:
{{
"vulnerabilities": ["list of potential security issues"],
"risk_levels": {{"vulnerability": "risk level"}},
"recommendations": ["list of security improvements"],
"overall_security_score": "1-10 score as a number"
}}"""
analysis = call_huggingface_api(prompt)
if "error" in analysis:
analysis = {
"vulnerabilities": ["Error analyzing security"],
"risk_levels": {"Error": "High"},
"recommendations": ["Try again later"],
"overall_security_score": 0
}
messages = state["messages"] + [AIMessage(content="Completed security analysis")]
return {**state, "messages": messages, "security_analysis": analysis, "current_step": "performance"}
def analyze_performance(state: State) -> dict:
"""Analyze code performance."""
code = state["code"]
prompt = f"""You are a performance optimization expert. Analyze this code for performance issues:
{code}
Focus on:
1. Time complexity
2. Space complexity
3. Resource usage
4. Bottlenecks
5. Optimization opportunities
Provide your response in JSON format with these exact keys:
{{
"bottlenecks": ["list of identified performance bottlenecks"],
"complexity_analysis": {{
"time_complexity": "Big O notation",
"space_complexity": "Big O notation",
"critical_sections": ["list of critical sections"]
}},
"optimization_suggestions": ["list of performance improvements"],
"performance_score": "1-10 score as a number"
}}"""
analysis = call_huggingface_api(prompt)
if "error" in analysis:
analysis = {
"bottlenecks": ["Error analyzing performance"],
"complexity_analysis": {
"time_complexity": "Unknown",
"space_complexity": "Unknown",
"critical_sections": []
},
"optimization_suggestions": ["Try again later"],
"performance_score": 0
}
messages = state["messages"] + [AIMessage(content="Completed performance analysis")]
return {**state, "messages": messages, "performance_analysis": analysis, "current_step": "architecture"}
def analyze_architecture(state: State) -> dict:
"""Analyze code architecture patterns."""
code = state["code"]
prompt = f"""You are a software architect. Analyze this code's architectural patterns:
{code}
Focus on:
1. Design patterns used
2. Code modularity
3. Component relationships
4. Architectural anti-patterns
5. System design principles
Provide your response in JSON format with these exact keys:
{{
"patterns_identified": ["list of design patterns found"],
"architectural_issues": ["list of architectural concerns"],
"improvement_suggestions": ["list of architectural improvements"],
"architecture_score": "1-10 score as a number"
}}"""
analysis = call_huggingface_api(prompt)
if "error" in analysis:
analysis = {
"patterns_identified": ["Error analyzing architecture"],
"architectural_issues": ["Analysis failed"],
"improvement_suggestions": ["Try again later"],
"architecture_score": 0
}
messages = state["messages"] + [AIMessage(content="Completed architecture analysis")]
return {**state, "messages": messages, "architecture_analysis": analysis, "current_step": "recommendations"}
def generate_final_recommendations(state: State) -> dict:
"""Generate final recommendations based on all analyses."""
code = state["code"]
prompt = f"""Analyze all previous results and provide final recommendations for this code:
Style Analysis: {json.dumps(state.get('style_analysis', {}))}
Security Analysis: {json.dumps(state.get('security_analysis', {}))}
Performance Analysis: {json.dumps(state.get('performance_analysis', {}))}
Architecture Analysis: {json.dumps(state.get('architecture_analysis', {}))}
Provide your response in JSON format with these exact keys:
{{
"critical_issues": ["list of most critical issues"],
"priority_improvements": ["list of high-priority improvements"],
"quick_wins": ["list of easy-to-implement improvements"],
"long_term_suggestions": ["list of long-term improvements"],
"overall_health_score": "1-10 score as a number"
}}"""
recommendations = call_huggingface_api(prompt)
if "error" in recommendations:
recommendations = {
"critical_issues": ["Error generating recommendations"],
"priority_improvements": ["Try again later"],
"quick_wins": [],
"long_term_suggestions": [],
"overall_health_score": 0
}
messages = state["messages"] + [AIMessage(content="Generated final recommendations")]
return {**state, "messages": messages, "final_recommendations": recommendations, "current_step": "end"}
def format_output(state: State) -> str:
"""Format the analysis results into a readable output."""
output = """πŸ” Code Analysis Report
🎨 Style & Best Practices
"""
style = state.get("style_analysis", {})
output += f"Rating: {style.get('overall_rating', 'N/A')}/10\n"
output += "Issues:\n" + "\n".join([f"β€’ {issue}" for issue in style.get("issues", [])]) + "\n\n"
output += """πŸ”’ Security Analysis
"""
security = state.get("security_analysis", {})
output += f"Score: {security.get('overall_security_score', 'N/A')}/10\n"
vulnerabilities = security.get("vulnerabilities", [])
risk_levels = security.get("risk_levels", {})
output += "Vulnerabilities:\n" + "\n".join([f"β€’ {v} ({risk_levels.get(v, 'Unknown')})" for v in vulnerabilities]) + "\n\n"
output += """⚑ Performance Analysis
"""
perf = state.get("performance_analysis", {})
output += f"Score: {perf.get('performance_score', 'N/A')}/10\n"
output += "Bottlenecks:\n" + "\n".join([f"β€’ {b}" for b in perf.get("bottlenecks", [])]) + "\n\n"
output += """πŸ—οΈ Architecture Analysis
"""
arch = state.get("architecture_analysis", {})
output += f"Score: {arch.get('architecture_score', 'N/A')}/10\n"
output += "Patterns:\n" + "\n".join([f"β€’ {p}" for p in arch.get("patterns_identified", [])]) + "\n\n"
output += """πŸ“‹ Final Recommendations
"""
final = state.get("final_recommendations", {})
output += f"Overall Health Score: {final.get('overall_health_score', 'N/A')}/10\n\n"
output += "Critical Issues:\n" + "\n".join([f"β€’ {i}" for i in final.get("critical_issues", [])]) + "\n\n"
output += "Priority Improvements:\n" + "\n".join([f"β€’ {i}" for i in final.get("priority_improvements", [])])
return output
# Create and setup graph
workflow = StateGraph(State)
# Add nodes
workflow.add_node("style", analyze_code_style)
workflow.add_node("security", analyze_security)
workflow.add_node("performance", analyze_performance)
workflow.add_node("architecture", analyze_architecture)
workflow.add_node("recommendations", generate_final_recommendations)
# Add edges
workflow.add_edge("style", "security")
workflow.add_edge("security", "performance")
workflow.add_edge("performance", "architecture")
workflow.add_edge("architecture", "recommendations")
# Set entry and finish points
workflow.set_entry_point("style")
workflow.set_finish_point("recommendations")
# Compile the workflow
agent = workflow.compile()
def analyze_code(code: str) -> str:
"""Analyze the provided code using multiple perspectives."""
initial_state = State(
messages=[SystemMessage(content="Starting code analysis...")],
current_step="style",
code=code,
style_analysis={},
security_analysis={},
performance_analysis={},
architecture_analysis={},
final_recommendations={}
)
final_state = agent.invoke(initial_state)
return format_output(final_state)
# Create Gradio interface
iface = gr.Interface(
fn=analyze_code,
inputs=gr.Code(
label="Enter your code for analysis",
language="python",
lines=20
),
outputs=gr.Textbox(
label="Analysis Results",
lines=25
),
title="πŸ” Code Architecture Critic",
description="Paste your code to get a comprehensive analysis of style, security, performance, and architecture.",
examples=[
['''def process_data(data):
result = []
for i in range(len(data)):
for j in range(len(data)):
if data[i] + data[j] == 10:
result.append((data[i], data[j]))
return result
def save_to_db(user_input):
query = "INSERT INTO users VALUES ('" + user_input + "')"
db.execute(query)
API_KEY = "sk_test_123456789"''']
],
theme=gr.themes.Soft()
)
if __name__ == "__main__":
iface.launch()