File size: 13,265 Bytes
015df0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
from langgraph.graph import StateGraph
from typing import TypedDict, Annotated, List, Dict
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
import json
import requests
import os
from dotenv import load_dotenv
import time

# Load environment variables
load_dotenv()

# Define the state structure
class State(TypedDict):
    messages: Annotated[list[SystemMessage | HumanMessage | AIMessage], add_messages]
    current_step: str
    code: str
    style_analysis: Dict
    security_analysis: Dict
    performance_analysis: Dict
    architecture_analysis: Dict
    final_recommendations: Dict

def call_huggingface_api(prompt: str, max_retries=3) -> Dict:
    """Call Hugging Face API with retry logic and proper error handling."""
    api_key = os.getenv("HUGGINGFACE_API_KEY")
    if not api_key:
        raise ValueError("HUGGINGFACE_API_KEY not found in environment variables")
    
    # You can change this to any model you prefer
    API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
    headers = {"Authorization": f"Bearer {api_key}"}
    
    for attempt in range(max_retries):
        try:
            response = requests.post(
                API_URL,
                headers=headers,
                json={
                    "inputs": prompt,
                    "parameters": {
                        "max_new_tokens": 1000,
                        "temperature": 0.7,
                        "top_p": 0.95,
                        "return_full_text": False
                    }
                }
            )
            
            if response.status_code == 200:
                result = response.json()
                if isinstance(result, list) and len(result) > 0:
                    # Extract the generated text
                    text = result[0].get('generated_text', '')
                    # Try to parse as JSON if it contains JSON
                    try:
                        # Find JSON content between triple backticks if present
                        if "```json" in text:
                            json_str = text.split("```json")[1].split("```")[0].strip()
                        else:
                            json_str = text.strip()
                        return json.loads(json_str)
                    except json.JSONDecodeError:
                        return {"error": "Failed to parse JSON from response", "raw_text": text}
                
            # If model is loading, wait and retry
            if response.status_code == 503:
                wait_time = 2 ** attempt
                time.sleep(wait_time)
                continue
                
        except Exception as e:
            if attempt == max_retries - 1:
                return {"error": f"API call failed: {str(e)}"}
            time.sleep(2 ** attempt)
    
    return {"error": "Maximum retries reached"}

def analyze_code_style(state: State) -> dict:
    """Analyze code style and best practices."""
    code = state["code"]
    prompt = f"""You are a senior code reviewer focused on code style and best practices. Analyze this code:

{code}

Focus on:
1. Code readability and clarity
2. Adherence to common style guides
3. Variable/function naming
4. Code organization
5. Documentation quality

Provide your response in JSON format with these exact keys:
{{
    "issues": ["list of identified style issues"],
    "suggestions": ["list of improvement suggestions"],
    "overall_rating": "1-10 score as a number",
    "primary_concerns": ["list of main style concerns"]
}}"""

    analysis = call_huggingface_api(prompt)
    if "error" in analysis:
        analysis = {
            "issues": ["Error analyzing code style"],
            "suggestions": ["Try again later"],
            "overall_rating": 0,
            "primary_concerns": ["Analysis failed"]
        }
    
    messages = state["messages"] + [AIMessage(content="Completed code style analysis")]
    return {**state, "messages": messages, "style_analysis": analysis, "current_step": "security"}

def analyze_security(state: State) -> dict:
    """Analyze security vulnerabilities."""
    code = state["code"]
    prompt = f"""You are a security expert. Analyze this code for security vulnerabilities:

{code}

Focus on:
1. Input validation
2. Authentication/Authorization
3. Data exposure
4. Common vulnerabilities
5. Security best practices

Provide your response in JSON format with these exact keys:
{{
    "vulnerabilities": ["list of potential security issues"],
    "risk_levels": {{"vulnerability": "risk level"}},
    "recommendations": ["list of security improvements"],
    "overall_security_score": "1-10 score as a number"
}}"""

    analysis = call_huggingface_api(prompt)
    if "error" in analysis:
        analysis = {
            "vulnerabilities": ["Error analyzing security"],
            "risk_levels": {"Error": "High"},
            "recommendations": ["Try again later"],
            "overall_security_score": 0
        }
    
    messages = state["messages"] + [AIMessage(content="Completed security analysis")]
    return {**state, "messages": messages, "security_analysis": analysis, "current_step": "performance"}

def analyze_performance(state: State) -> dict:
    """Analyze code performance."""
    code = state["code"]
    prompt = f"""You are a performance optimization expert. Analyze this code for performance issues:

{code}

Focus on:
1. Time complexity
2. Space complexity
3. Resource usage
4. Bottlenecks
5. Optimization opportunities

Provide your response in JSON format with these exact keys:
{{
    "bottlenecks": ["list of identified performance bottlenecks"],
    "complexity_analysis": {{
        "time_complexity": "Big O notation",
        "space_complexity": "Big O notation",
        "critical_sections": ["list of critical sections"]
    }},
    "optimization_suggestions": ["list of performance improvements"],
    "performance_score": "1-10 score as a number"
}}"""

    analysis = call_huggingface_api(prompt)
    if "error" in analysis:
        analysis = {
            "bottlenecks": ["Error analyzing performance"],
            "complexity_analysis": {
                "time_complexity": "Unknown",
                "space_complexity": "Unknown",
                "critical_sections": []
            },
            "optimization_suggestions": ["Try again later"],
            "performance_score": 0
        }
    
    messages = state["messages"] + [AIMessage(content="Completed performance analysis")]
    return {**state, "messages": messages, "performance_analysis": analysis, "current_step": "architecture"}

def analyze_architecture(state: State) -> dict:
    """Analyze code architecture patterns."""
    code = state["code"]
    prompt = f"""You are a software architect. Analyze this code's architectural patterns:

{code}

Focus on:
1. Design patterns used
2. Code modularity
3. Component relationships
4. Architectural anti-patterns
5. System design principles

Provide your response in JSON format with these exact keys:
{{
    "patterns_identified": ["list of design patterns found"],
    "architectural_issues": ["list of architectural concerns"],
    "improvement_suggestions": ["list of architectural improvements"],
    "architecture_score": "1-10 score as a number"
}}"""

    analysis = call_huggingface_api(prompt)
    if "error" in analysis:
        analysis = {
            "patterns_identified": ["Error analyzing architecture"],
            "architectural_issues": ["Analysis failed"],
            "improvement_suggestions": ["Try again later"],
            "architecture_score": 0
        }
    
    messages = state["messages"] + [AIMessage(content="Completed architecture analysis")]
    return {**state, "messages": messages, "architecture_analysis": analysis, "current_step": "recommendations"}

def generate_final_recommendations(state: State) -> dict:
    """Generate final recommendations based on all analyses."""
    code = state["code"]
    prompt = f"""Analyze all previous results and provide final recommendations for this code:

Style Analysis: {json.dumps(state.get('style_analysis', {}))}
Security Analysis: {json.dumps(state.get('security_analysis', {}))}
Performance Analysis: {json.dumps(state.get('performance_analysis', {}))}
Architecture Analysis: {json.dumps(state.get('architecture_analysis', {}))}

Provide your response in JSON format with these exact keys:
{{
    "critical_issues": ["list of most critical issues"],
    "priority_improvements": ["list of high-priority improvements"],
    "quick_wins": ["list of easy-to-implement improvements"],
    "long_term_suggestions": ["list of long-term improvements"],
    "overall_health_score": "1-10 score as a number"
}}"""

    recommendations = call_huggingface_api(prompt)
    if "error" in recommendations:
        recommendations = {
            "critical_issues": ["Error generating recommendations"],
            "priority_improvements": ["Try again later"],
            "quick_wins": [],
            "long_term_suggestions": [],
            "overall_health_score": 0
        }
    
    messages = state["messages"] + [AIMessage(content="Generated final recommendations")]
    return {**state, "messages": messages, "final_recommendations": recommendations, "current_step": "end"}

def format_output(state: State) -> str:
    """Format the analysis results into a readable output."""
    output = """πŸ” Code Analysis Report

🎨 Style & Best Practices
"""
    style = state.get("style_analysis", {})
    output += f"Rating: {style.get('overall_rating', 'N/A')}/10\n"
    output += "Issues:\n" + "\n".join([f"β€’ {issue}" for issue in style.get("issues", [])]) + "\n\n"

    output += """πŸ”’ Security Analysis
"""
    security = state.get("security_analysis", {})
    output += f"Score: {security.get('overall_security_score', 'N/A')}/10\n"
    vulnerabilities = security.get("vulnerabilities", [])
    risk_levels = security.get("risk_levels", {})
    output += "Vulnerabilities:\n" + "\n".join([f"β€’ {v} ({risk_levels.get(v, 'Unknown')})" for v in vulnerabilities]) + "\n\n"

    output += """⚑ Performance Analysis
"""
    perf = state.get("performance_analysis", {})
    output += f"Score: {perf.get('performance_score', 'N/A')}/10\n"
    output += "Bottlenecks:\n" + "\n".join([f"β€’ {b}" for b in perf.get("bottlenecks", [])]) + "\n\n"

    output += """πŸ—οΈ Architecture Analysis
"""
    arch = state.get("architecture_analysis", {})
    output += f"Score: {arch.get('architecture_score', 'N/A')}/10\n"
    output += "Patterns:\n" + "\n".join([f"β€’ {p}" for p in arch.get("patterns_identified", [])]) + "\n\n"

    output += """πŸ“‹ Final Recommendations
"""
    final = state.get("final_recommendations", {})
    output += f"Overall Health Score: {final.get('overall_health_score', 'N/A')}/10\n\n"
    output += "Critical Issues:\n" + "\n".join([f"β€’ {i}" for i in final.get("critical_issues", [])]) + "\n\n"
    output += "Priority Improvements:\n" + "\n".join([f"β€’ {i}" for i in final.get("priority_improvements", [])])

    return output

# Create and setup graph
workflow = StateGraph(State)

# Add nodes
workflow.add_node("style", analyze_code_style)
workflow.add_node("security", analyze_security)
workflow.add_node("performance", analyze_performance)
workflow.add_node("architecture", analyze_architecture)
workflow.add_node("recommendations", generate_final_recommendations)

# Add edges
workflow.add_edge("style", "security")
workflow.add_edge("security", "performance")
workflow.add_edge("performance", "architecture")
workflow.add_edge("architecture", "recommendations")

# Set entry and finish points
workflow.set_entry_point("style")
workflow.set_finish_point("recommendations")

# Compile the workflow
agent = workflow.compile()

def analyze_code(code: str) -> str:
    """Analyze the provided code using multiple perspectives."""
    initial_state = State(
        messages=[SystemMessage(content="Starting code analysis...")],
        current_step="style",
        code=code,
        style_analysis={},
        security_analysis={},
        performance_analysis={},
        architecture_analysis={},
        final_recommendations={}
    )
    
    final_state = agent.invoke(initial_state)
    return format_output(final_state)

# Create Gradio interface
iface = gr.Interface(
    fn=analyze_code,
    inputs=gr.Code(
        label="Enter your code for analysis",
        language="python",
        lines=20
    ),
    outputs=gr.Textbox(
        label="Analysis Results",
        lines=25
    ),
    title="πŸ” Code Architecture Critic",
    description="Paste your code to get a comprehensive analysis of style, security, performance, and architecture.",
    examples=[
        ['''def process_data(data):
    result = []
    for i in range(len(data)):
        for j in range(len(data)):
            if data[i] + data[j] == 10:
                result.append((data[i], data[j]))
    return result

def save_to_db(user_input):
    query = "INSERT INTO users VALUES ('" + user_input + "')"
    db.execute(query)

API_KEY = "sk_test_123456789"''']
    ],
    theme=gr.themes.Soft()
)

if __name__ == "__main__":
    iface.launch()