File size: 5,571 Bytes
6e165b4
c261abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e165b4
c261abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e165b4
c261abe
 
 
6e165b4
c261abe
 
 
6e165b4
c261abe
 
6e165b4
c261abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e165b4
 
 
c261abe
6e165b4
 
 
 
 
 
 
c261abe
8a6e350
 
 
 
c261abe
 
6e165b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import chainlit as cl
from llama_index import ServiceContext
from llama_index.node_parser.simple import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.llms import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index import VectorStoreIndex
from llama_index.vector_stores import ChromaVectorStore
from llama_index.storage.storage_context import StorageContext
import chromadb
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.tools import FunctionTool
from llama_index.vector_stores.types import (
    VectorStoreInfo,
    MetadataInfo,
    ExactMatchFilter,
    MetadataFilters,
)
from llama_index.retrievers import VectorIndexRetriever
from llama_index.query_engine import RetrieverQueryEngine

from typing import List, Tuple, Any
from pydantic import BaseModel, Field
from llama_index.agent import OpenAIAgent

embed_model = OpenAIEmbedding()
chunk_size = 1000
llm = OpenAI(
    temperature=0, 
    model="gpt-3.5-turbo", 
    streaming=True
)

service_context = ServiceContext.from_defaults(
    llm=llm, 
    chunk_size=chunk_size, 
    embed_model=embed_model
)

text_splitter = TokenTextSplitter(
    chunk_size=chunk_size
)

node_parser = SimpleNodeParser(
    text_splitter=text_splitter
)

chroma_client = chromadb.Client()
chroma_collection = chroma_client.create_collection("wikipedia_barbie_opp")

vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)

movie_list = ["Barbie (film)", "Oppenheimer (film)"]

wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)

top_k = 3
vector_store_info = VectorStoreInfo(
    content_info="semantic information about movies",
    metadata_info=[MetadataInfo(
        name="title",
        type="str",
        description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
    )]
)

class AutoRetrieveModel(BaseModel):
    query: str = Field(..., description="natural language query string")
    filter_key_list: List[str] = Field(
        ..., description="List of metadata filter field names"
    )
    filter_value_list: List[str] = Field(
        ...,
        description=(
            "List of metadata filter field values (corresponding to names specified in filter_key_list)"
        )
    )

def auto_retrieve_fn(
    query: str, filter_key_list: List[str], filter_value_list: List[str]
):
    """Auto retrieval function.

    Performs auto-retrieval from a vector database, and then applies a set of filters.

    """
    query = query or "Query"

    exact_match_filters = [
        ExactMatchFilter(key=k, value=v)
        for k, v in zip(filter_key_list, filter_value_list)
    ]
    retriever = VectorIndexRetriever(
        wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
    )
    query_engine = RetrieverQueryEngine.from_args(retriever)

    response = query_engine.query(query)
    return str(response)

description = f"""\
Use this tool to look up semantic information about films.
The vector database schema is given below:
{vector_store_info.json()}
"""

auto_retrieve_tool = FunctionTool.from_defaults(
    fn=auto_retrieve_fn,
    name="auto_retrieve_tool",
    description=description,
    fn_schema=AutoRetrieveModel,
)


agent = OpenAIAgent.from_tools(
    [auto_retrieve_tool], llm=llm, verbose=True
)

@cl.author_rename
def rename(orig_author: str):
    rename_dict = {"RetrievalQA": "Consulting The Llamaindex Tools"}
    return rename_dict.get(orig_author, orig_author)

@cl.on_chat_start
async def init():
    msg = cl.Message(content=f"Building Index...")
    await msg.send()

    for movie, wiki_doc in zip(movie_list, wiki_docs):
        nodes = node_parser.get_nodes_from_documents([wiki_doc])
        for node in nodes:
            node.metadata = {'title' : movie}
        wiki_vector_index.insert_nodes(nodes)

    

    chain = RetrievalQA.from_chain_type(
        ChatOpenAI(model="gpt-3.5-turbo", temperature=0, streaming=True),
        chain_type="stuff",
        return_source_documents=True,
        retriever=docsearch.as_retriever(),
        chain_type_kwargs = {"prompt": prompt}
    )

    msg.content = f"Index built!"
    await msg.send()

    cl.user_session.set("chain", chain)


@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")
    cb = cl.AsyncLangchainCallbackHandler(
        stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
    )
    cb.answer_reached = True
    res = await chain.acall(message, callbacks=[cb], )

    answer = res["result"]
    source_elements = []
    visited_sources = set()

    # Get the documents from the user session
    docs = res["source_documents"]
    metadatas = [doc.metadata for doc in docs]
    all_sources = [m["source"] for m in metadatas]

    for source in all_sources:
        if source in visited_sources:
            continue
        visited_sources.add(source)
        # Create the text element referenced in the message
        source_elements.append(
            cl.Text(content="https://www.imdb.com" + source, name="Review URL")
        )

    if source_elements:
        answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}"
    else:
        answer += "\nNo sources found"

    await cl.Message(content=answer, elements=source_elements).send()