Spaces:
Runtime error
Runtime error
File size: 5,571 Bytes
6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 6e165b4 c261abe 8a6e350 c261abe 6e165b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import chainlit as cl
from llama_index import ServiceContext
from llama_index.node_parser.simple import SimpleNodeParser
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
from llama_index.llms import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index import VectorStoreIndex
from llama_index.vector_stores import ChromaVectorStore
from llama_index.storage.storage_context import StorageContext
import chromadb
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.tools import FunctionTool
from llama_index.vector_stores.types import (
VectorStoreInfo,
MetadataInfo,
ExactMatchFilter,
MetadataFilters,
)
from llama_index.retrievers import VectorIndexRetriever
from llama_index.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
from llama_index.agent import OpenAIAgent
embed_model = OpenAIEmbedding()
chunk_size = 1000
llm = OpenAI(
temperature=0,
model="gpt-3.5-turbo",
streaming=True
)
service_context = ServiceContext.from_defaults(
llm=llm,
chunk_size=chunk_size,
embed_model=embed_model
)
text_splitter = TokenTextSplitter(
chunk_size=chunk_size
)
node_parser = SimpleNodeParser(
text_splitter=text_splitter
)
chroma_client = chromadb.Client()
chroma_collection = chroma_client.create_collection("wikipedia_barbie_opp")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
movie_list = ["Barbie (film)", "Oppenheimer (film)"]
wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="semantic information about movies",
metadata_info=[MetadataInfo(
name="title",
type="str",
description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
)]
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[str] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
)
)
def auto_retrieve_fn(
query: str, filter_key_list: List[str], filter_value_list: List[str]
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
exact_match_filters = [
ExactMatchFilter(key=k, value=v)
for k, v in zip(filter_key_list, filter_value_list)
]
retriever = VectorIndexRetriever(
wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
)
query_engine = RetrieverQueryEngine.from_args(retriever)
response = query_engine.query(query)
return str(response)
description = f"""\
Use this tool to look up semantic information about films.
The vector database schema is given below:
{vector_store_info.json()}
"""
auto_retrieve_tool = FunctionTool.from_defaults(
fn=auto_retrieve_fn,
name="auto_retrieve_tool",
description=description,
fn_schema=AutoRetrieveModel,
)
agent = OpenAIAgent.from_tools(
[auto_retrieve_tool], llm=llm, verbose=True
)
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"RetrievalQA": "Consulting The Llamaindex Tools"}
return rename_dict.get(orig_author, orig_author)
@cl.on_chat_start
async def init():
msg = cl.Message(content=f"Building Index...")
await msg.send()
for movie, wiki_doc in zip(movie_list, wiki_docs):
nodes = node_parser.get_nodes_from_documents([wiki_doc])
for node in nodes:
node.metadata = {'title' : movie}
wiki_vector_index.insert_nodes(nodes)
chain = RetrievalQA.from_chain_type(
ChatOpenAI(model="gpt-3.5-turbo", temperature=0, streaming=True),
chain_type="stuff",
return_source_documents=True,
retriever=docsearch.as_retriever(),
chain_type_kwargs = {"prompt": prompt}
)
msg.content = f"Index built!"
await msg.send()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message, callbacks=[cb], )
answer = res["result"]
source_elements = []
visited_sources = set()
# Get the documents from the user session
docs = res["source_documents"]
metadatas = [doc.metadata for doc in docs]
all_sources = [m["source"] for m in metadatas]
for source in all_sources:
if source in visited_sources:
continue
visited_sources.add(source)
# Create the text element referenced in the message
source_elements.append(
cl.Text(content="https://www.imdb.com" + source, name="Review URL")
)
if source_elements:
answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=source_elements).send()
|