Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,129 @@
|
|
| 1 |
import chainlit as cl
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
----------------
|
| 33 |
-
{context}"""
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@cl.author_rename
|
| 43 |
def rename(orig_author: str):
|
| 44 |
-
rename_dict = {"RetrievalQA": "Consulting The
|
| 45 |
return rename_dict.get(orig_author, orig_author)
|
| 46 |
|
| 47 |
@cl.on_chat_start
|
|
@@ -49,17 +131,13 @@ async def init():
|
|
| 49 |
msg = cl.Message(content=f"Building Index...")
|
| 50 |
await msg.send()
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
core_embeddings_model, store, namespace=core_embeddings_model.model
|
| 60 |
-
)
|
| 61 |
-
# make async docsearch
|
| 62 |
-
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder)
|
| 63 |
|
| 64 |
chain = RetrievalQA.from_chain_type(
|
| 65 |
ChatOpenAI(model="gpt-3.5-turbo", temperature=0, streaming=True),
|
|
|
|
| 1 |
import chainlit as cl
|
| 2 |
+
from llama_index import ServiceContext
|
| 3 |
+
from llama_index.node_parser.simple import SimpleNodeParser
|
| 4 |
+
from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
|
| 5 |
+
from llama_index.llms import OpenAI
|
| 6 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 7 |
+
from llama_index import VectorStoreIndex
|
| 8 |
+
from llama_index.vector_stores import ChromaVectorStore
|
| 9 |
+
from llama_index.storage.storage_context import StorageContext
|
| 10 |
+
import chromadb
|
| 11 |
+
from llama_index.readers.wikipedia import WikipediaReader
|
| 12 |
+
from llama_index.tools import FunctionTool
|
| 13 |
+
from llama_index.vector_stores.types import (
|
| 14 |
+
VectorStoreInfo,
|
| 15 |
+
MetadataInfo,
|
| 16 |
+
ExactMatchFilter,
|
| 17 |
+
MetadataFilters,
|
| 18 |
)
|
| 19 |
+
from llama_index.retrievers import VectorIndexRetriever
|
| 20 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
| 21 |
+
|
| 22 |
+
from typing import List, Tuple, Any
|
| 23 |
+
from pydantic import BaseModel, Field
|
| 24 |
+
from llama_index.agent import OpenAIAgent
|
| 25 |
+
|
| 26 |
|
| 27 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 28 |
|
| 29 |
+
embed_model = OpenAIEmbedding()
|
| 30 |
+
chunk_size = 1000
|
| 31 |
+
llm = OpenAI(
|
| 32 |
+
temperature=0,
|
| 33 |
+
model="gpt-3.5-turbo",
|
| 34 |
+
streaming=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
service_context = ServiceContext.from_defaults(
|
| 38 |
+
llm=llm,
|
| 39 |
+
chunk_size=chunk_size,
|
| 40 |
+
embed_model=embed_model
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
text_splitter = TokenTextSplitter(
|
| 44 |
+
chunk_size=chunk_size
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
node_parser = SimpleNodeParser(
|
| 48 |
+
text_splitter=text_splitter
|
| 49 |
+
)
|
| 50 |
|
| 51 |
+
chroma_client = chromadb.Client()
|
| 52 |
+
chroma_collection = chroma_client.create_collection("wikipedia_barbie_opp")
|
| 53 |
|
| 54 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 55 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 56 |
+
wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
|
| 57 |
|
| 58 |
+
movie_list = ["Barbie (film)", "Oppenheimer (film)"]
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)
|
| 61 |
+
|
| 62 |
+
top_k = 3
|
| 63 |
+
vector_store_info = VectorStoreInfo(
|
| 64 |
+
content_info="semantic information about movies",
|
| 65 |
+
metadata_info=[MetadataInfo(
|
| 66 |
+
name="title",
|
| 67 |
+
type="str",
|
| 68 |
+
description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
|
| 69 |
+
)]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
class AutoRetrieveModel(BaseModel):
|
| 73 |
+
query: str = Field(..., description="natural language query string")
|
| 74 |
+
filter_key_list: List[str] = Field(
|
| 75 |
+
..., description="List of metadata filter field names"
|
| 76 |
+
)
|
| 77 |
+
filter_value_list: List[str] = Field(
|
| 78 |
+
...,
|
| 79 |
+
description=(
|
| 80 |
+
"List of metadata filter field values (corresponding to names specified in filter_key_list)"
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def auto_retrieve_fn(
|
| 85 |
+
query: str, filter_key_list: List[str], filter_value_list: List[str]
|
| 86 |
+
):
|
| 87 |
+
"""Auto retrieval function.
|
| 88 |
+
|
| 89 |
+
Performs auto-retrieval from a vector database, and then applies a set of filters.
|
| 90 |
+
|
| 91 |
+
"""
|
| 92 |
+
query = query or "Query"
|
| 93 |
+
|
| 94 |
+
exact_match_filters = [
|
| 95 |
+
ExactMatchFilter(key=k, value=v)
|
| 96 |
+
for k, v in zip(filter_key_list, filter_value_list)
|
| 97 |
+
]
|
| 98 |
+
retriever = VectorIndexRetriever(
|
| 99 |
+
wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
|
| 100 |
+
)
|
| 101 |
+
query_engine = RetrieverQueryEngine.from_args(retriever)
|
| 102 |
+
|
| 103 |
+
response = query_engine.query(query)
|
| 104 |
+
return str(response)
|
| 105 |
+
|
| 106 |
+
description = f"""\
|
| 107 |
+
Use this tool to look up semantic information about films.
|
| 108 |
+
The vector database schema is given below:
|
| 109 |
+
{vector_store_info.json()}
|
| 110 |
+
"""
|
| 111 |
+
|
| 112 |
+
auto_retrieve_tool = FunctionTool.from_defaults(
|
| 113 |
+
fn=auto_retrieve_fn,
|
| 114 |
+
name="auto_retrieve_tool",
|
| 115 |
+
description=description,
|
| 116 |
+
fn_schema=AutoRetrieveModel,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
agent = OpenAIAgent.from_tools(
|
| 121 |
+
[auto_retrieve_tool], llm=llm, verbose=True
|
| 122 |
+
)
|
| 123 |
|
| 124 |
@cl.author_rename
|
| 125 |
def rename(orig_author: str):
|
| 126 |
+
rename_dict = {"RetrievalQA": "Consulting The Llamaindex Tools"}
|
| 127 |
return rename_dict.get(orig_author, orig_author)
|
| 128 |
|
| 129 |
@cl.on_chat_start
|
|
|
|
| 131 |
msg = cl.Message(content=f"Building Index...")
|
| 132 |
await msg.send()
|
| 133 |
|
| 134 |
+
for movie, wiki_doc in zip(movie_list, wiki_docs):
|
| 135 |
+
nodes = node_parser.get_nodes_from_documents([wiki_doc])
|
| 136 |
+
for node in nodes:
|
| 137 |
+
node.metadata = {'title' : movie}
|
| 138 |
+
wiki_vector_index.insert_nodes(nodes)
|
| 139 |
+
|
| 140 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
chain = RetrievalQA.from_chain_type(
|
| 143 |
ChatOpenAI(model="gpt-3.5-turbo", temperature=0, streaming=True),
|