Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
from scenedetect import VideoManager, SceneManager | |
from scenedetect.detectors import ContentDetector | |
from moviepy.editor import VideoFileClip | |
from transformers import CLIPProcessor, CLIPModel | |
import torch | |
import yt_dlp | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device) | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
def download_video(url): | |
ydl_opts = { | |
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]', | |
'outtmpl': 'downloaded_video.%(ext)s', | |
'merge_output_format': 'mp4', | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
result = ydl.extract_info(url, download=True) | |
video_filename = ydl.prepare_filename(result) | |
safe_filename = sanitize_filename(video_filename) | |
if os.path.exists(video_filename) and video_filename != safe_filename: | |
os.rename(video_filename, safe_filename) | |
return safe_filename | |
def sanitize_filename(filename): | |
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename]) | |
def find_scenes(video_path): | |
video_manager = VideoManager([video_path]) | |
scene_manager = SceneManager() | |
scene_manager.add_detector(ContentDetector(threshold=30)) | |
video_manager.set_downscale_factor() | |
video_manager.start() | |
scene_manager.detect_scenes(frame_source=video_manager) | |
scene_list = scene_manager.get_scene_list() | |
video_manager.release() | |
return scene_list | |
def extract_frames(video_path, scene_list): | |
scene_frames = {} | |
cap = cv2.VideoCapture(video_path) | |
for i, (start_time, end_time) in enumerate(scene_list): | |
frames = [] | |
first_frame = None | |
start_frame = start_time.get_frames() | |
end_frame = end_time.get_frames() | |
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame) | |
while cap.get(cv2.CAP_PROP_POS_FRAMES) < end_frame: | |
ret, frame = cap.read() | |
if ret: | |
if first_frame is None: | |
first_frame = frame | |
if int(cap.get(cv2.CAP_PROP_POS_FRAMES)) % 5 == 0: | |
frames.append(frame) | |
scene_frames[i] = (start_time, end_time, frames, first_frame) | |
cap.release() | |
return scene_frames | |
def convert_timestamp_to_seconds(timestamp): | |
h, m, s = map(float, timestamp.split(':')) | |
return int(h) * 3600 + int(m) * 60 + s | |
def classify_and_categorize_scenes(scene_frames, description_phrases): | |
scene_categories = {} | |
description_texts = description_phrases | |
action_indices = [0] | |
context_indices = list(set(range(len(description_texts))) - set(action_indices)) | |
for scene_id, (start_time, end_time, frames, first_frame) in scene_frames.items(): | |
scene_scores = [0] * len(description_texts) | |
valid_frames = 0 | |
for frame in frames: | |
image = Image.fromarray(frame[..., ::-1]) | |
image_input = processor(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
text_inputs = processor(text=description_texts, return_tensors="pt", padding=True).to(device) | |
text_features = model.get_text_features(**text_inputs) | |
image_features = model.get_image_features(**image_input) | |
logits = (image_features @ text_features.T).squeeze() | |
probs = logits.softmax(dim=0) | |
scene_scores = [sum(x) for x in zip(scene_scores, probs.tolist())] | |
valid_frames += 1 | |
if valid_frames > 0: | |
scene_scores = [score / valid_frames for score in scene_scores] | |
action_confidence = sum(scene_scores[i] for i in action_indices) / len(action_indices) | |
context_confidence = sum(scene_scores[i] for i in context_indices) / len(context_indices) | |
best_description_index = scene_scores.index(max(scene_scores)) | |
best_description = description_texts[best_description_index] | |
if action_confidence > context_confidence: | |
category = "Action Scene" | |
confidence = action_confidence | |
else: | |
category = "Context Scene" | |
confidence = context_confidence | |
duration = end_time.get_seconds() - start_time.get_seconds() | |
scene_categories[scene_id] = { | |
"category": category, | |
"confidence": confidence, | |
"start_time": str(start_time), | |
"end_time": str(end_time), | |
"duration": duration, | |
"first_frame": first_frame, | |
"best_description": best_description | |
} | |
return scene_categories | |
def save_clip(video_path, scene_info, output_directory, scene_id): | |
output_filename = f"scene_{scene_id+1}_{scene_info['category'].replace(' ', '_')}.mp4" | |
output_filepath = os.path.join(output_directory, output_filename) | |
start_seconds = convert_timestamp_to_seconds(scene_info['start_time']) | |
end_seconds = convert_timestamp_to_seconds(scene_info['end_time']) | |
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds) | |
video_clip.write_videofile(output_filepath, codec='libx264', audio_codec='aac') | |
video_clip.close() | |
return output_filepath, scene_info['first_frame'] | |
def process_video(video_url, description): | |
output_directory = "output" | |
os.makedirs(output_directory, exist_ok=True) | |
video_path = download_video(video_url) | |
scenes = find_scenes(video_path) | |
scene_frames = extract_frames(video_path, scenes) | |
description_phrases = [description] # Modify if multiple descriptions are needed | |
scene_categories = classify_and_categorize_scenes(scene_frames, description_phrases) | |
best_scene = max(scene_categories.items(), key=lambda x: x[1]['confidence'])[1] | |
clip_path, first_frame = save_clip(video_path, best_scene, output_directory, 0) | |
return clip_path | |