Spaces:
Sleeping
Sleeping
File size: 5,118 Bytes
6097f87 90dff8a 6097f87 90dff8a f5e8a49 90dff8a 192d4c3 9846923 90dff8a 33428af 90dff8a 33428af 9846923 33428af 1115063 33428af 90dff8a f5e8a49 90dff8a f5e8a49 90dff8a f5e8a49 c31ee40 90dff8a f5e8a49 c31ee40 f8656a1 9f5a744 c31ee40 6097f87 c31ee40 6097f87 72a3e3b a54edde 72a3e3b e687cbf c31ee40 9f5a744 e687cbf 33428af 192d4c3 72a3e3b 192d4c3 72a3e3b 614e074 a54edde c31ee40 e687cbf 9f5a744 c31ee40 33428af c31ee40 90dff8a 33428af c31ee40 9846923 c31ee40 9846923 c31ee40 72a3e3b 9846923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=30))
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
def extract_frames(video_path, start_time, end_time):
frames = []
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 2)):
frame = video_clip.get_frame(frame_time / video_clip.fps)
frames.append(frame)
return frames
def analyze_scenes(video_path, scenes, description):
highest_prob = 0.0
best_scene = None
# Tokenize and encode the description text
text_inputs = processor(text=[description], return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
for scene_num, (start_time, end_time) in enumerate(scenes):
frames = extract_frames(video_path, start_time, end_time)
if not frames:
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
continue
scene_prob = 0.0
for frame in frames:
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
logits = (image_features @ text_features.T).squeeze()
probs = logits.softmax(dim=0)
scene_prob += probs.max().item()
scene_prob /= len(frames)
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}")
if scene_prob > highest_prob:
highest_prob = scene_prob
best_scene = (start_time, end_time)
if best_scene:
print(f"Best Scene: Start={best_scene[0]}, End={best_scene[1]}, Probability={highest_prob}")
else:
print("No suitable scene found")
return best_scene
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def process_video(video_url, description):
video_path = download_video(video_url)
scenes = find_scenes(video_path)
best_scene = analyze_scenes(video_path, scenes, description)
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}")
|