Spaces:
Sleeping
Sleeping
File size: 6,732 Bytes
6097f87 90dff8a 218cb15 90dff8a f5e8a49 90dff8a 192d4c3 9846923 d9349af 90dff8a 33428af 90dff8a 33428af 9846923 33428af 1115063 33428af 90dff8a d9349af 5c99594 d9349af 5c99594 d9349af f5e8a49 d1268c3 5c99594 d1268c3 90dff8a 218cb15 d1268c3 90dff8a d1268c3 218cb15 d1268c3 c31ee40 90dff8a 5c99594 d1268c3 f5e8a49 218cb15 f5e8a49 c31ee40 218cb15 3f95bbc 9f5a744 c31ee40 6097f87 c31ee40 3f95bbc 6097f87 cf4ffba 918bcce cf4ffba 72a3e3b cf4ffba 72a3e3b e687cbf c31ee40 9f5a744 e687cbf 33428af 192d4c3 72a3e3b 192d4c3 72a3e3b cf4ffba c31ee40 e687cbf 218cb15 3f95bbc e687cbf 3f95bbc e687cbf 3f95bbc 9f5a744 3f95bbc c31ee40 218cb15 c31ee40 90dff8a 5ff01ce 5c99594 33428af 5c99594 c31ee40 5c99594 c31ee40 9846923 c31ee40 9846923 c31ee40 72a3e3b 9846923 a4f5085 9846923 5c99594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import cv2
from scenedetect import SceneManager, open_video, split_video_ffmpeg
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
import subprocess
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def ensure_video_format(video_path):
output_dir = "temp_videos"
os.makedirs(output_dir, exist_ok=True)
temp_path = os.path.join(output_dir, f"formatted_{uuid.uuid4()}.mp4")
command = ['ffmpeg', '-i', video_path, '-c', 'copy', temp_path]
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return temp_path
except subprocess.CalledProcessError as e:
print(f"Error processing video with ffmpeg: {e.stderr.decode()}")
return None
def find_scenes(video_path):
print(f"Processing video for scene detection: {video_path}")
video_path = ensure_video_format(video_path)
print(f"Video formatted at path: {video_path}")
try:
video_manager = open_video(video_path)
except Exception as e:
print(f"Failed to open video: {e}")
return []
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=30.0))
try:
scene_manager.detect_scenes(video_manager)
except Exception as e:
print(f"Error during scene detection: {e}")
return []
scene_list = scene_manager.get_scene_list()
if not scene_list:
print("No scenes detected.")
return []
scenes = [(scene[0].get_seconds(), scene[1].get_seconds()) for scene in scene_list]
print(f"Detected scenes: {scenes}")
return scenes
def convert_timestamp_to_seconds(timestamp):
return float(timestamp)
def extract_frames(video_path, start_time, end_time):
frames = []
video_clip = VideoFileClip(video_path).subclip(start_time, end_time)
for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 5)):
frame = video_clip.get_frame(frame_time / video_clip.fps)
frames.append(frame)
return frames
def analyze_scenes(video_path, scenes, description):
scene_scores = []
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
for scene_num, (start_time, end_time) in enumerate(scenes):
frames = extract_frames(video_path, start_time, end_time)
if not frames:
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
continue
scene_prob = 0.0
for frame in frames:
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
scene_prob += positive_similarity - negative_similarities
scene_prob /= len(frames)
scene_duration = end_time - start_time
print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}")
scene_scores.append((scene_prob, start_time, end_time, scene_duration))
scene_scores.sort(reverse=True, key=lambda x: x[0])
top_scenes = scene_scores[:5]
longest_scene = max(top_scenes, key=lambda x: x[3])
if longest_scene:
print(f"Longest Scene: Start={longest_scene[1]}, End={longest_scene[2]}, Probability={longest_scene[0]}, Duration={longest_scene[3]}")
else:
print("No suitable scene found")
return longest_scene[1:3] if longest_scene else None
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
video_clip = VideoFileClip(video_path).subclip(start_time, end_time)
return video_clip
def process_video(video_input, description, is_url=True):
video_path = download_video(video_input) if is_url else video_input
scenes = find_scenes(video_path)
if not scenes:
print("No scenes detected. Exiting.")
return None
best_scene = analyze_scenes(video_path, scenes, description)
if not best_scene:
print("No suitable scenes found. Exiting.")
return None
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error cleaning up temporary files: {e}")
|