Spaces:
Sleeping
Sleeping
File size: 24,480 Bytes
200202c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
# -*- coding: utf-8 -*-
"""AudioSpeechSentimentAnalysis_JRMDIOUF.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1tizgeMs7DXaZPQO3V253paATKev0ra0m
"""
#!pip install transformers
#!pip install wandb
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import pickle
import re
from typing import DefaultDict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.functional as F
import wandb
# from google.colab import userdata
# from huggingface_hub import login
from sklearn.metrics import (
accuracy_score,
confusion_matrix,
precision_score,
recall_score,
)
from torch.utils.data import DataLoader, Dataset, Subset
from transformers import AutoTokenizer, BertModel, Wav2Vec2ForCTC, Wav2Vec2Processor
"""hf_token = userdata.get("HF_TOKEN")
wandb_token = userdata.get("WAND_TOKEN")"""
# Commented out IPython magic to ensure Python compatibility.
# %env HF_TOKEN_ENV=$hf_token
"""!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/dev.tsv
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/fine-tune.tsv
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/test.tsv
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/dev.zip
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/fine-tune.zip
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/test.zip
if not os.path.exists("dev_raw"):
print("dev_raw folder not found. Unzipping dev.zip...")
!unzip -q dev.zip
else:
print("dev_raw folder already exists. Skipping unzip.")
if not os.path.exists("fine-tune_raw"):
print("fine-tune_raw folder not found. Unzipping fine-tune.zip...")
!unzip -q fine-tune.zip
else:
print("fine-tune_raw folder already exists. Skipping unzip.")
if not os.path.exists("test_raw"):
print("test_raw folder not found. Unzipping test.zip...")
!unzip -q test.zip
else:
print("test_raw folder already exists. Skipping unzip.")"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
NUM_EPOCHS = 5
BATCH_SIZE = 16
SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH = "max_len.pkl"
SAVED_CUSTOM_BERT_TOKENIZER_DIR = "bert_tokenizer_local"
SAVED_CUSTOM_BERT_MODEL_PATH = "custom_bert_model.bin"
SAVED_TARGET_CAT_PATH = "categories.bin"
TRAIN_DS_PATH = "fine-tune.tsv"
TEST_DS_PATH = "test.tsv"
BERT_BASE_MODEL = "google-bert/bert-base-uncased"
INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE = 30
SAVED_AUDIO_MODEL_DIR_PATH = "wav2vec2_local"
AUDIO_BASE_MODEL = "facebook/wav2vec2-base-960h"
PROCESSOR_NAME = "preprocessor_config.json"
MODEL_NAME = "config.json"
SENTIMENT_MODALITIES = ["Neutral", "Positive", "Negative"]
class CustomBertDataset(Dataset):
def __init__(
self,
file_path,
audio_folder,
model_path=BERT_BASE_MODEL,
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
saved_max_len_path=SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH,
):
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.lines = open(file_path).readlines()
self.lines = np.array(
[
[
re.split(r"\t+", line.replace("\n", ""))[1],
re.split(r"\t+", line.replace("\n", ""))[4],
re.split(r"\t+", line.replace("\n", ""))[0],
]
for i, line in enumerate(self.lines)
if line != "\n" and i != 0
]
)
self.elem_cats = self.lines[:, 1]
self.corpus = self.lines[:, 0]
self.audio_files_id = self.lines[:, 2]
# We have to proceed in this order here
self.corpus = [
sent.lower()
for sent, cat in zip(self.corpus, self.elem_cats)
if cat in SENTIMENT_MODALITIES
]
self.audio_files = np.array(
[
os.path.join(audio_folder, f"{file_name}.flac")
for file_name, cat in zip(self.audio_files_id, self.elem_cats)
if cat in SENTIMENT_MODALITIES
]
)
self.elem_cats = [cat for cat in self.elem_cats if cat in SENTIMENT_MODALITIES]
self.unique_cats = sorted(list(set(self.elem_cats)))
self.num_class = len(self.unique_cats)
self.cats_dict = {cat: i for i, cat in enumerate(self.unique_cats)}
self.targets = np.array([self.cats_dict[cat] for cat in self.elem_cats])
torch.save(self.unique_cats, saved_target_cats_path)
self.tokenizer.save_pretrained(SAVED_CUSTOM_BERT_TOKENIZER_DIR)
"""entry_dict = DefaultDict(list)
for i in range(len(self.corpus)):
entry_dict[self.targets[i]].append(self.corpus[i])
self.final_corpus = []
self.final_targets = []
n=0
while n < len(self.corpus):
for key in entry_dict.keys():
if len(entry_dict[key]) > 0:
self.final_corpus.append(entry_dict[key].pop(0))
self.final_targets.append(key)
n+=1
self.corpus = np.array(self.final_corpus)
self.targets = np.array(self.final_targets)"""
self.max_len = 0
for sent in self.corpus:
input_ids = self.tokenizer.encode(sent, add_special_tokens=True)
self.max_len = max(self.max_len, len(input_ids))
self.max_len = min(self.max_len, 512)
print(f"Max length : {self.max_len}")
print(f"Nombre de classes : {self.num_class}")
print(f"Exemples de targets : {np.unique(self.targets)}")
# Save max_len
with open(saved_max_len_path, "wb") as f:
pickle.dump(self.max_len, f)
print(f"max_len saved to {saved_max_len_path}")
def __len__(self):
return len(self.elem_cats)
def __getitem__(self, idx):
text = self.corpus[idx]
target = self.targets[idx]
# Vérification : target doit être entre 0 et num_class - 1
if target < 0 or target >= self.num_class:
raise ValueError(
f"Target out of bounds: {target} not in [0, {self.num_class - 1}]"
)
encoded_input = self.tokenizer.encode_plus(
text,
max_length=self.max_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
return (
encoded_input["input_ids"].squeeze(0),
encoded_input["attention_mask"].squeeze(0),
torch.tensor(target, dtype=torch.long),
self.audio_files[idx],
)
# return np.array(encoded_input), torch.tensor(target, dtype=torch.long)
class CustomBertModel(nn.Module):
def __init__(self, num_class, model_path=BERT_BASE_MODEL):
super(CustomBertModel, self).__init__()
self.model_path = model_path
self.num_class = num_class
self.bert = BertModel.from_pretrained(self.model_path)
# Freeze of the parameters of this layer for the training process
for param in self.bert.parameters():
param.requires_grad = False
# self.proj_intermediate = nn.Sequential(nn.Linear(self.bert.config.hidden_size, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE),nn.Linear(INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE), INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE),nn.Linear(INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE))
self.proj_lin = nn.Linear(self.bert.config.hidden_size, self.num_class)
def forward(self, input_ids, attention_mask):
x = self.bert(input_ids=input_ids, attention_mask=attention_mask)
x = x.last_hidden_state[:, 0, :]
# x = self.proj_intermediate(x)
x = self.proj_lin(x)
return x
def train_step(model, train_dataloader, loss_fn, optimizer):
num_iterations = len(train_dataloader)
for i in range(NUM_EPOCHS):
print(f"Training Epoch n° {i}")
model.train()
for j, batch in enumerate(train_dataloader):
input = batch[:][0]
attention = batch[:][1]
target = batch[:][2]
output = model(input.to(device), attention.to(device))
loss = loss_fn(output, target.to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
run.log({"Training loss": loss})
print(f"Epoch {i+1} | step {j+1} / {num_iterations} | loss : {loss}")
# Save model
torch.save(model.state_dict(), SAVED_CUSTOM_BERT_MODEL_PATH)
print(f"Custom BERT Model saved at {SAVED_CUSTOM_BERT_MODEL_PATH}")
def eval_step(
test_dataloader,
loss_fn,
num_class,
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
):
y_pred = []
y_true = []
num_iterations = len(test_dataloader)
# Load the saved model
saved_model = CustomBertModel(num_class)
saved_model.load_state_dict(
torch.load(saved_model_path, weights_only=False)
) # Explicitly set weights_only to False
saved_model = saved_model.to(device)
saved_model.eval() # Set the model to evaluation mode
print(f"Model loaded from path :{saved_model_path}")
with torch.no_grad():
for j, batch in enumerate(test_dataloader):
input = batch[:][0]
attention = batch[:][1]
target = batch[:][2]
output = saved_model(input.to(device), attention.to(device))
loss = loss_fn(output, target.to(device))
run.log({"Eval loss": loss})
print(f"Step {j+1} / {num_iterations} | Eval loss : {loss}")
y_pred.extend(output.cpu().numpy().argmax(axis=1))
y_true.extend(target.cpu().numpy())
class_labels = torch.load(saved_target_cats_path, weights_only=False)
true_labels = [class_labels[i] for i in y_true]
pred_labels = [class_labels[i] for i in y_pred]
print(f"Accuracy : {accuracy_score(true_labels, pred_labels)}")
cm = confusion_matrix(true_labels, pred_labels, labels=class_labels)
df_cm = pd.DataFrame(cm, index=class_labels, columns=class_labels)
sns.heatmap(df_cm, annot=True, fmt="d")
plt.title("Confusion Matrix for Sentiment analysis dataset")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
def eval_pipeline_step(
test_dataloader,
loss_fn,
num_class,
audio_model_dir=SAVED_AUDIO_MODEL_DIR_PATH,
audio_model_name=MODEL_NAME,
audio_processor_name=PROCESSOR_NAME,
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
):
y_pred = []
y_true = []
num_iterations = len(test_dataloader)
# Load the saved model
saved_model = CustomBertModel(num_class)
saved_model.load_state_dict(
torch.load(saved_model_path, weights_only=False)
) # Explicitly set weights_only to False
saved_model = saved_model.to(device)
saved_model.eval() # Set the model to evaluation mode
print(f"Model loaded from path :{saved_model_path}")
audio_processor = None
audio_model = None
processor_path = os.path.join(
audio_model_dir, audio_processor_name
) # Check for a key file, like the preprocessor config
model_path = os.path.join(
audio_model_dir, audio_model_name
) # Check for a key file, like the model config
if (
os.path.exists(audio_model_dir)
and os.path.exists(processor_path)
and os.path.exists(model_path)
):
print("Local Wav2Vec2 processor and model found. Loading from local directory.")
audio_processor = Wav2Vec2Processor.from_pretrained(audio_model_dir)
audio_model = Wav2Vec2ForCTC.from_pretrained(audio_model_dir)
else:
print(
"Local Wav2Vec2 processor and model not found. Downloading from Hugging Face Hub."
)
audio_processor = Wav2Vec2Processor.from_pretrained(AUDIO_BASE_MODEL)
audio_model = Wav2Vec2ForCTC.from_pretrained(AUDIO_BASE_MODEL)
# Optionally save the downloaded model and processor for future use
audio_processor.save_pretrained(audio_model_dir)
audio_model.save_pretrained(audio_model_dir)
print(f"Wav2Vec2 processor and model downloaded and saved to {audio_model_dir}")
# Move audio model to GPU
audio_model = audio_model.to(device)
audio_model.eval()
with torch.no_grad():
for j, batch in enumerate(test_dataloader):
target = batch[:][2]
audio_file_path = batch[:][3]
encoded_inputs = []
attention_masks = []
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
sample_rate = bundle.sample_rate
for audio_file in audio_file_path:
waveform, sr = torchaudio.load(audio_file)
if sr != sample_rate:
print("Resampling")
resampler = torchaudio.transforms.Resample(
orig_freq=sr, new_freq=sample_rate
)
waveform = resampler(waveform)
# Move waveform to GPU before processing
input_values = audio_processor(
waveform.squeeze().numpy(),
sampling_rate=sample_rate,
return_tensors="pt",
).input_values.to(device)
with torch.no_grad():
logits = audio_model(input_values).logits
predicted_ids_hf = torch.argmax(logits, dim=-1)
transcript_hf = audio_processor.decode(
predicted_ids_hf[0].cpu().numpy()
) # Move predicted_ids_hf back to CPU for decoding
transcript_hf = (
transcript_hf.lower() if transcript_hf is not None else None
)
encoded_input = test_dataloader.dataset.tokenizer.encode_plus(
transcript_hf,
max_length=test_dataloader.dataset.max_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
encoded_inputs.append(encoded_input["input_ids"].squeeze(0))
attention_masks.append(encoded_input["attention_mask"].squeeze(0))
text_input = torch.stack(encoded_inputs)
attention = torch.stack(attention_masks)
output = saved_model(text_input.to(device), attention.to(device))
loss = loss_fn(output, target.to(device))
run.log({"Pipeline Eval loss": loss})
print(f"Step {j+1} / {num_iterations} | Pipeline Eval loss : {loss}")
y_pred.extend(output.cpu().numpy().argmax(axis=1))
y_true.extend(target.cpu().numpy())
class_labels = torch.load(saved_target_cats_path, weights_only=False)
true_labels = [class_labels[i] for i in y_true]
pred_labels = [class_labels[i] for i in y_pred]
print(f"Pipeline Accuracy : {accuracy_score(true_labels, pred_labels)}")
cm = confusion_matrix(true_labels, pred_labels, labels=class_labels)
df_cm = pd.DataFrame(cm, index=class_labels, columns=class_labels)
sns.heatmap(df_cm, annot=True, fmt="d")
plt.title("Confusion Matrix for Sentiment analysis Pipeline")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
def get_audio_sentiment(
input_audio_path,
num_class=len(SENTIMENT_MODALITIES),
audio_model_dir=SAVED_AUDIO_MODEL_DIR_PATH,
audio_model_name=MODEL_NAME,
audio_processor_name=PROCESSOR_NAME,
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
tokenizer_save_directory=SAVED_CUSTOM_BERT_TOKENIZER_DIR,
saved_max_len_path=SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH,
):
# Load the saved model
saved_model = CustomBertModel(num_class)
saved_model.load_state_dict(
torch.load(
saved_model_path, weights_only=False, map_location=torch.device(device)
)
) # Explicitly set weights_only to False
saved_model = saved_model.to(device)
saved_model.eval() # Set the model to evaluation mode
print(f"Model loaded from path :{saved_model_path}")
loaded_tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_directory)
max_len = 0
with open(saved_max_len_path, "rb") as f:
max_len = pickle.load(f)
audio_processor = None
audio_model = None
processor_path = os.path.join(
audio_model_dir, audio_processor_name
) # Check for a key file, like the preprocessor config
model_path = os.path.join(
audio_model_dir, audio_model_name
) # Check for a key file, like the model config
if (
os.path.exists(audio_model_dir)
and os.path.exists(processor_path)
and os.path.exists(model_path)
):
print("Local Wav2Vec2 processor and model found. Loading from local directory.")
audio_processor = Wav2Vec2Processor.from_pretrained(audio_model_dir)
audio_model = Wav2Vec2ForCTC.from_pretrained(audio_model_dir)
else:
print(
"Local Wav2Vec2 processor and model not found. Downloading from Hugging Face Hub."
)
audio_processor = Wav2Vec2Processor.from_pretrained(AUDIO_BASE_MODEL)
audio_model = Wav2Vec2ForCTC.from_pretrained(AUDIO_BASE_MODEL)
# Optionally save the downloaded model and processor for future use
audio_processor.save_pretrained(audio_model_dir)
audio_model.save_pretrained(audio_model_dir)
print(f"Wav2Vec2 processor and model downloaded and saved to {audio_model_dir}")
# Move audio model to GPU
audio_model = audio_model.to(device)
audio_model.eval()
with torch.no_grad():
audio_file_path = input_audio_path
encoded_inputs = []
attention_masks = []
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
sample_rate = bundle.sample_rate
waveform, sr = torchaudio.load(audio_file_path)
if sr != sample_rate:
print("Resampling")
resampler = torchaudio.transforms.Resample(
orig_freq=sr, new_freq=sample_rate
)
waveform = resampler(waveform)
# Move waveform to GPU before processing
input_values = audio_processor(
waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt"
).input_values.to(device)
with torch.no_grad():
logits = audio_model(input_values).logits
predicted_ids_hf = torch.argmax(logits, dim=-1)
transcript_hf = audio_processor.decode(
predicted_ids_hf[0].cpu().numpy()
) # Move predicted_ids_hf back to CPU for decoding
transcript_hf = transcript_hf.lower() if transcript_hf is not None else None
encoded_input = loaded_tokenizer.encode_plus(
transcript_hf,
max_length=max_len,
padding="max_length",
truncation=True,
return_tensors="pt",
)
encoded_inputs.append(encoded_input["input_ids"].squeeze(0))
attention_masks.append(encoded_input["attention_mask"].squeeze(0))
# Stack the lists of tensors before moving to device
text_input = torch.stack(encoded_inputs)
attention = torch.stack(attention_masks)
output = saved_model(text_input.to(device), attention.to(device))
class_labels = torch.load(saved_target_cats_path, weights_only=False)
return class_labels[output.cpu().numpy().argmax(axis=1)[0]]
# Login using e.g. `huggingface-cli login` to access this dataset
# global_train_ds = load_dataset("asapp/slue-voxceleb", streaming=True, token='jrmd_hf_token')
# global_train_ds = load_dataset('asapp/slue',token='jrmd_hf_token')
# global_train_ds = load_dataset('voxceleb',token='jrmd_hf_token')
# global_test_ds = load_dataset("asapp/slue", "voxceleb", split="test", token='jrmd_hf_token')
# Get torchaudio pipeline components
"""bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
#model = bundle.get_model()
#labels = bundle.get_labels()
sample_rate = bundle.sample_rate"""
"""waveform, sr = torchaudio.load("/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac")
# Resample if sr != sample_rate (or model_hf.config.sampling_rate)
if sr != sample_rate:
print("Resampling")
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
waveform = resampler(waveform)"""
# Using torchaudio pipeline - Manual Greedy Decoding
"""with torch.no_grad():
emission = model(waveform)"""
# Assuming emission is log-probabilities or logits
# Perform greedy decoding: get the index of the max probability at each time step
# predicted_ids_torchaudio = torch.argmax(emission[0], dim=-1)
# Process the predicted IDs: remove consecutive duplicates and blank tokens
# Assuming the blank token is at index 0 (which is common for CTC, check labels if unsure)
"""processed_ids_torchaudio = []
for id in predicted_ids_torchaudio[0]: # emission has shape (batch_size, num_frames, num_labels)
if id.item() != 0 and (len(processed_ids_torchaudio) == 0 or id.item() != processed_ids_torchaudio[-1]):
processed_ids_torchaudio.append(id.item())"""
"""# Convert token IDs to transcript using labels
#transcript = "".join([labels[id] for id in processed_ids_torchaudio])
# Using Hugging Face transformers
# Note: processor and model_hf are defined in cell DnJDG6P3BTjZ
# To make this cell fully self-contained, you might want to include their definitions here as well.
# For now, assuming they are defined in a previously executed cell.
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
model_hf = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# Load and resample waveform
waveform, sr = torchaudio.load("/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac")
if sr != sample_rate:
print("Resampling")
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
waveform = resampler(waveform)
input_values = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_values
with torch.no_grad():
logits = model_hf(input_values).logits
predicted_ids_hf = torch.argmax(logits, dim=-1)
transcript_hf = processor.decode(predicted_ids_hf[0])
#print("Torchaudio Transcript:", transcript)
print("Hugging Face Transcript:", transcript_hf)"""
if __name__ == "__main__":
wandb.login(key=wandb_token)
run = wandb.init(project="DIT-Wav2Vec-Bert-Sentiment-Analysis-project")
bert_train_dataset = CustomBertDataset(TRAIN_DS_PATH, "fine-tune_raw")
bert_test_dataset = CustomBertDataset(TEST_DS_PATH, "test_raw")
print(f"Size of bert dataset : {len(bert_train_dataset)}")
"""train_dataset = Subset(our_bert_dataset, range(int(len(our_bert_dataset)*0.8)))
test_dataset = Subset(our_bert_dataset, range(int(len(our_bert_dataset)*0.8), len(our_bert_dataset)))"""
train_dataloader = DataLoader(
bert_train_dataset, batch_size=BATCH_SIZE, shuffle=True
)
test_dataloader = DataLoader(
bert_test_dataset, batch_size=BATCH_SIZE, shuffle=False
)
our_bert_model = CustomBertModel(bert_train_dataset.num_class)
our_bert_model = our_bert_model.to(device)
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, our_bert_model.parameters()), lr=0.01
)
train_step(our_bert_model, train_dataloader, loss_fn, optimizer)
eval_step(test_dataloader, loss_fn, bert_train_dataset.num_class)
eval_pipeline_step(test_dataloader, loss_fn, bert_train_dataset.num_class)
test_inference_audio_path = "/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac"
print(get_audio_sentiment(test_inference_audio_path))
|