thesis-demo / app.py
Jonas Rheiner
update
4b77aea
raw
history blame
12.3 kB
import numpy as np
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import torch
import itertools
import os
import plotly.graph_objects as go
CUDA_AVAILABLE = torch.cuda.is_available()
print(f"CUDA={CUDA_AVAILABLE}")
device = "cuda" if CUDA_AVAILABLE else "cpu"
print(f"count={torch.cuda.device_count()}")
print(f"current={torch.cuda.get_device_name(torch.cuda.current_device())}")
continent_model = CLIPModel.from_pretrained("model-checkpoints/continent")
country_model = CLIPModel.from_pretrained("model-checkpoints/country")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
continent_model = continent_model.to(device)
country_model = country_model.to(device)
continents = ["Africa", "Asia", "Europe",
"North America", "Oceania", "South America"]
countries_per_continent = {
"Africa": [
"Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Cabo Verde", "Cameroon",
"Central African Republic", "Congo", "Democratic Republic of the Congo",
"Djibouti", "Egypt", "Equatorial Guinea", "Eritrea", "Eswatini", "Ethiopia", "Gabon",
"Gambia", "Ghana", "Guinea", "Guinea-Bissau", "Ivory Coast", "Kenya", "Lesotho", "Liberia",
"Libya", "Madagascar", "Malawi", "Mali", "Mauritania", "Mauritius", "Morocco", "Mozambique",
"Namibia", "Niger", "Nigeria", "Rwanda", "Sao Tome and Principe", "Senegal", "Seychelles",
"Sierra Leone", "Somalia", "South Africa", "Sudan", "Tanzania", "Togo",
"Tunisia", "Uganda", "Zambia", "Zimbabwe"
],
"Asia": [
"Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bangladesh", "Bhutan", "Brunei",
"Cambodia", "China", "Cyprus", "Georgia", "India", "Indonesia", "Iran", "Iraq",
"Israel", "Japan", "Jordan", "Kazakhstan", "Kuwait", "Kyrgyzstan", "Laos", "Lebanon",
"Malaysia", "Maldives", "Mongolia", "Myanmar", "Nepal", "North Korea", "Oman", "Pakistan",
"Palestine", "Philippines", "Qatar", "Russia", "Saudi Arabia", "Singapore", "South Korea",
"Sri Lanka", "Syria", "Taiwan", "Tajikistan", "Thailand", "Timor-Leste", "Turkey",
"Turkmenistan", "United Arab Emirates", "Uzbekistan", "Vietnam", "Yemen"
],
"Europe": [
"Albania", "Armenia", "Austria", "Azerbaijan", "Belarus", "Belgium", "Bosnia and Herzegovina",
"Bulgaria", "Croatia", "Cyprus", "Czech Republic", "Denmark", "Estonia", "Finland", "France",
"Georgia", "Germany", "Greece", "Hungary", "Iceland", "Ireland", "Italy", "Kazakhstan",
"Kosovo", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "Malta", "Moldova", "Monaco",
"Montenegro", "Netherlands", "North Macedonia", "Norway", "Poland", "Portugal", "Romania",
"Russia", "San Marino", "Serbia", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland",
"Turkey", "Ukraine", "United Kingdom"
],
"North America": [
"Antigua and Barbuda", "Bahamas", "Barbados", "Belize", "Canada", "Costa Rica", "Cuba",
"Dominica", "Dominican Republic", "El Salvador", "Grenada", "Guatemala", "Haiti", "Honduras",
"Jamaica", "Mexico", "Nicaragua", "Panama", "Saint Kitts and Nevis", "Saint Lucia",
"Saint Vincent and the Grenadines", "Trinidad and Tobago", "United States"
],
"Oceania": [
"Australia", "Fiji", "Kiribati", "Marshall Islands", "Micronesia", "Nauru", "New Zealand",
"Palau", "Papua New Guinea", "Samoa", "Solomon Islands", "Tonga", "Tuvalu", "Vanuatu"
],
"South America": [
"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Guyana", "Paraguay",
"Peru", "Suriname", "Uruguay", "Venezuela"
]
}
countries = list(set(itertools.chain.from_iterable(
countries_per_continent.values())))
INTIAL_VERSUS_IMAGE = "versus_images/Europe_Germany_49.069183_10.319444_im2gps3k.jpg"
INITAL_VERSUS_STATE = {
"image": INTIAL_VERSUS_IMAGE,
"continent": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[0],
"country": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[1],
"lat": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[2],
"lon": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[3],
"score": {
"HUMAN": 0,
"AI": 0
},
"idx": 0
}
def predict(input_img):
inputs = processor(text=[f"A photo from {
geo}." for geo in continents], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = continent_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
continent_probs = {label: prob for label,
prob in zip(continents, probs.tolist()[0])}
predicted_continent_countries = countries_per_continent[continents[pred_id]]
inputs = processor(text=[f"A photo from {
geo}." for geo in predicted_continent_countries], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = country_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
country_probs = {label: prob for label, prob in zip(
predicted_continent_countries, probs.tolist()[0])}
return continent_probs, country_probs
def make_versus_map(human_country, model_country, versus_state):
fig = go.Figure()
fig.add_trace(go.Scattergeo(
lon=[versus_state["lon"]],
lat=[versus_state["lat"]],
text=["πŸ“·"],
mode='text+markers',
hoverinfo='text',
hovertext=f"Photo taken in {versus_state['country']}, {
versus_state['continent']}",
marker=dict(size=14, color='#00B945'),
showlegend=False
))
if human_country == model_country:
fig.add_trace(go.Scattergeo(
locations=[human_country],
locationmode='country names',
text=["πŸ§‘πŸ€–"],
mode='text',
hoverinfo='location',
showlegend=False
))
else:
fig.add_trace(go.Scattergeo(
locations=[human_country],
locationmode='country names',
text=["πŸ§‘"],
mode='text',
hoverinfo='location',
showlegend=False
))
fig.add_trace(go.Scattergeo(
locations=[model_country],
locationmode='country names',
text=["πŸ€–"],
mode='text',
hoverinfo='location',
showlegend=False
))
fig.update_geos(
visible=True, resolution=110,
showcountries=True, countrycolor="grey", fitbounds="locations", projection_type="natural earth",
)
return fig
def versus_mode_inputs(input_img, human_continent, human_country, versus_state):
human_points = 0
model_points = 0
if human_country == versus_state["country"]:
country_result = "βœ…"
human_points += 2
else:
country_result = "❌"
if human_continent == versus_state["continent"]:
continent_result = "βœ…"
human_points += 1
else:
continent_result = "❌"
human_result = f"The photo is from **{versus_state['country']}** {
country_result} in **{versus_state['continent']}** {continent_result}"
human_score_update = f"+{
human_points} points" if human_points > 0 else "Wrong guess, try a new image."
versus_state['score']['HUMAN'] += human_points
continent_probs, country_probs = predict(input_img)
model_country = max(country_probs, key=country_probs.get)
model_continent = max(continent_probs, key=continent_probs.get)
if model_country == versus_state["country"]:
model_country_result = "βœ…"
model_points += 2
else:
model_country_result = "❌"
if model_continent == versus_state["continent"]:
model_continent_result = "βœ…"
model_points += 1
else:
model_continent_result = "❌"
model_score_update = f"+{
model_points} points" if model_points > 0 else "The model was wrong, seems the world is not yet doomed."
versus_state['score']['AI'] += model_points
map = make_versus_map(human_country, model_country, versus_state)
return f"""
## {human_result}
### The AI πŸ€– thinks this photo is from **{model_country}** {model_country_result} in **{model_continent}** {model_continent_result}
πŸ§‘ {human_score_update}
πŸ€– {model_score_update}
### Score πŸ§‘ {versus_state['score']['HUMAN']} : {versus_state['score']['AI']} πŸ€–
""", continent_probs, country_probs, map, versus_state
def get_example_images(dir):
image_extensions = (".jpg", ".jpeg", ".png")
image_files = []
for root, dirs, files in os.walk(dir):
for file in files:
if file.lower().endswith(image_extensions):
image_files.append(os.path.join(root, file))
return image_files
def next_versus_image(versus_state):
images = get_example_images("versus_images")
versus_state["idx"] += 1
if versus_state["idx"] > len(images):
versus_state["idx"] = 0
versus_image = images[versus_state["idx"]]
versus_state["continent"] = versus_image.split("/")[-1].split("_")[0]
versus_state["country"] = versus_image.split("/")[-1].split("_")[1]
versus_state["lat"] = versus_image.split("/")[-1].split("_")[2]
versus_state["lon"] = versus_image.split("/")[-1].split("_")[3]
versus_state["image"] = versus_image
return versus_image, versus_state, None, None
demo = gr.Blocks()
with demo:
with gr.Tab("Image Geolocation Demo"):
with gr.Row():
with gr.Column():
image = gr.Image(label="Image", type="pil",
sources=["upload", "clipboard"])
predict_btn = gr.Button("Predict")
example_images = get_example_images("kerger-test-images")
# example_images.extend(get_example_images("versus_images"))
gr.Examples(examples=example_images,
inputs=image, examples_per_page=24)
with gr.Column():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
# continents_label.select(predict_country, inputs=[image, continents_label], outputs=country_label)
predict_btn.click(predict, inputs=image, outputs=[
continents_label, country_label])
with gr.Tab("Versus Mode"):
versus_state = gr.State(value=INITAL_VERSUS_STATE)
with gr.Row():
with gr.Column():
versus_image = gr.Image(
INITAL_VERSUS_STATE["image"], interactive=False)
continent_selection = gr.Radio(
continents, label="Continents", info="Where was this image taken? (1 Point)")
country_selection = gr.Dropdown(countries, label="Countries", info="Can you guess the exact country? (2 Points)"
),
with gr.Row():
next_img_btn = gr.Button("Try new image")
versus_btn = gr.Button("Submit guess")
with gr.Column():
versus_output = gr.Markdown()
# with gr.Accordion("View Map", open=False):
map = gr.Plot(label="Locations")
with gr.Accordion("Full Model Output", open=False):
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
next_img_btn.click(next_versus_image, inputs=[versus_state], outputs=[versus_image, versus_state, continent_selection, country_selection[0]])
versus_btn.click(versus_mode_inputs, inputs=[versus_image, continent_selection, country_selection[0], versus_state], outputs=[
versus_output, continents_label, country_label, map, versus_state])
if __name__ == "__main__":
demo.launch()