Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
from transformers import CLIPProcessor, CLIPModel | |
import torch | |
import itertools | |
import os | |
import plotly.graph_objects as go | |
CUDA_AVAILABLE = torch.cuda.is_available() | |
print(f"CUDA={CUDA_AVAILABLE}") | |
device = "cuda" if CUDA_AVAILABLE else "cpu" | |
print(f"count={torch.cuda.device_count()}") | |
print(f"current={torch.cuda.get_device_name(torch.cuda.current_device())}") | |
continent_model = CLIPModel.from_pretrained("model-checkpoints/continent") | |
country_model = CLIPModel.from_pretrained("model-checkpoints/country") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14-336") | |
continent_model = continent_model.to(device) | |
country_model = country_model.to(device) | |
continents = ["Africa", "Asia", "Europe", | |
"North America", "Oceania", "South America"] | |
countries_per_continent = { | |
"Africa": [ | |
"Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Cabo Verde", "Cameroon", | |
"Central African Republic", "Congo", "Democratic Republic of the Congo", | |
"Djibouti", "Egypt", "Equatorial Guinea", "Eritrea", "Eswatini", "Ethiopia", "Gabon", | |
"Gambia", "Ghana", "Guinea", "Guinea-Bissau", "Ivory Coast", "Kenya", "Lesotho", "Liberia", | |
"Libya", "Madagascar", "Malawi", "Mali", "Mauritania", "Mauritius", "Morocco", "Mozambique", | |
"Namibia", "Niger", "Nigeria", "Rwanda", "Sao Tome and Principe", "Senegal", "Seychelles", | |
"Sierra Leone", "Somalia", "South Africa", "Sudan", "Tanzania", "Togo", | |
"Tunisia", "Uganda", "Zambia", "Zimbabwe" | |
], | |
"Asia": [ | |
"Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bangladesh", "Bhutan", "Brunei", | |
"Cambodia", "China", "Cyprus", "Georgia", "India", "Indonesia", "Iran", "Iraq", | |
"Israel", "Japan", "Jordan", "Kazakhstan", "Kuwait", "Kyrgyzstan", "Laos", "Lebanon", | |
"Malaysia", "Maldives", "Mongolia", "Myanmar", "Nepal", "North Korea", "Oman", "Pakistan", | |
"Palestine", "Philippines", "Qatar", "Russia", "Saudi Arabia", "Singapore", "South Korea", | |
"Sri Lanka", "Syria", "Taiwan", "Tajikistan", "Thailand", "Timor-Leste", "Turkey", | |
"Turkmenistan", "United Arab Emirates", "Uzbekistan", "Vietnam", "Yemen" | |
], | |
"Europe": [ | |
"Albania", "Armenia", "Austria", "Azerbaijan", "Belarus", "Belgium", "Bosnia and Herzegovina", | |
"Bulgaria", "Croatia", "Cyprus", "Czech Republic", "Denmark", "Estonia", "Finland", "France", | |
"Georgia", "Germany", "Greece", "Hungary", "Iceland", "Ireland", "Italy", "Kazakhstan", | |
"Kosovo", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "Malta", "Moldova", "Monaco", | |
"Montenegro", "Netherlands", "North Macedonia", "Norway", "Poland", "Portugal", "Romania", | |
"Russia", "San Marino", "Serbia", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland", | |
"Turkey", "Ukraine", "United Kingdom" | |
], | |
"North America": [ | |
"Antigua and Barbuda", "Bahamas", "Barbados", "Belize", "Canada", "Costa Rica", "Cuba", | |
"Dominica", "Dominican Republic", "El Salvador", "Grenada", "Guatemala", "Haiti", "Honduras", | |
"Jamaica", "Mexico", "Nicaragua", "Panama", "Saint Kitts and Nevis", "Saint Lucia", | |
"Saint Vincent and the Grenadines", "Trinidad and Tobago", "United States" | |
], | |
"Oceania": [ | |
"Australia", "Fiji", "Kiribati", "Marshall Islands", "Micronesia", "Nauru", "New Zealand", | |
"Palau", "Papua New Guinea", "Samoa", "Solomon Islands", "Tonga", "Tuvalu", "Vanuatu" | |
], | |
"South America": [ | |
"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Guyana", "Paraguay", | |
"Peru", "Suriname", "Uruguay", "Venezuela" | |
] | |
} | |
countries = list(set(itertools.chain.from_iterable( | |
countries_per_continent.values()))) | |
INTIAL_VERSUS_IMAGE = "versus_images/Europe_Germany_49.069183_10.319444_im2gps3k.jpg" | |
INITAL_VERSUS_STATE = { | |
"image": INTIAL_VERSUS_IMAGE, | |
"continent": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[0], | |
"country": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[1], | |
"lat": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[2], | |
"lon": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[3], | |
"score": { | |
"HUMAN": 0, | |
"AI": 0 | |
}, | |
"idx": 0 | |
} | |
def predict(input_img): | |
inputs = processor(text=[f"A photo from { | |
geo}." for geo in continents], images=input_img, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) | |
with torch.no_grad(): | |
outputs = continent_model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=-1) | |
pred_id = probs.argmax().cpu().item() | |
continent_probs = {label: prob for label, | |
prob in zip(continents, probs.tolist()[0])} | |
predicted_continent_countries = countries_per_continent[continents[pred_id]] | |
inputs = processor(text=[f"A photo from { | |
geo}." for geo in predicted_continent_countries], images=input_img, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) | |
with torch.no_grad(): | |
outputs = country_model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=-1) | |
country_probs = {label: prob for label, prob in zip( | |
predicted_continent_countries, probs.tolist()[0])} | |
return continent_probs, country_probs | |
def make_versus_map(human_country, model_country, versus_state): | |
fig = go.Figure() | |
fig.add_trace(go.Scattergeo( | |
lon=[versus_state["lon"]], | |
lat=[versus_state["lat"]], | |
text=["π·"], | |
mode='text+markers', | |
hoverinfo='text', | |
hovertext=f"Photo taken in {versus_state['country']}, { | |
versus_state['continent']}", | |
marker=dict(size=14, color='#00B945'), | |
showlegend=False | |
)) | |
if human_country == model_country: | |
fig.add_trace(go.Scattergeo( | |
locations=[human_country], | |
locationmode='country names', | |
text=["π§π€"], | |
mode='text', | |
hoverinfo='location', | |
showlegend=False | |
)) | |
else: | |
fig.add_trace(go.Scattergeo( | |
locations=[human_country], | |
locationmode='country names', | |
text=["π§"], | |
mode='text', | |
hoverinfo='location', | |
showlegend=False | |
)) | |
fig.add_trace(go.Scattergeo( | |
locations=[model_country], | |
locationmode='country names', | |
text=["π€"], | |
mode='text', | |
hoverinfo='location', | |
showlegend=False | |
)) | |
fig.update_geos( | |
visible=True, resolution=110, | |
showcountries=True, countrycolor="grey", fitbounds="locations", projection_type="natural earth", | |
) | |
return fig | |
def versus_mode_inputs(input_img, human_continent, human_country, versus_state): | |
human_points = 0 | |
model_points = 0 | |
if human_country == versus_state["country"]: | |
country_result = "β " | |
human_points += 2 | |
else: | |
country_result = "β" | |
if human_continent == versus_state["continent"]: | |
continent_result = "β " | |
human_points += 1 | |
else: | |
continent_result = "β" | |
human_result = f"The photo is from **{versus_state['country']}** { | |
country_result} in **{versus_state['continent']}** {continent_result}" | |
human_score_update = f"+{ | |
human_points} points" if human_points > 0 else "Wrong guess, try a new image." | |
versus_state['score']['HUMAN'] += human_points | |
continent_probs, country_probs = predict(input_img) | |
model_country = max(country_probs, key=country_probs.get) | |
model_continent = max(continent_probs, key=continent_probs.get) | |
if model_country == versus_state["country"]: | |
model_country_result = "β " | |
model_points += 2 | |
else: | |
model_country_result = "β" | |
if model_continent == versus_state["continent"]: | |
model_continent_result = "β " | |
model_points += 1 | |
else: | |
model_continent_result = "β" | |
model_score_update = f"+{ | |
model_points} points" if model_points > 0 else "The model was wrong, seems the world is not yet doomed." | |
versus_state['score']['AI'] += model_points | |
map = make_versus_map(human_country, model_country, versus_state) | |
return f""" | |
## {human_result} | |
### The AI π€ thinks this photo is from **{model_country}** {model_country_result} in **{model_continent}** {model_continent_result} | |
π§ {human_score_update} | |
π€ {model_score_update} | |
### Score π§ {versus_state['score']['HUMAN']} : {versus_state['score']['AI']} π€ | |
""", continent_probs, country_probs, map, versus_state | |
def get_example_images(dir): | |
image_extensions = (".jpg", ".jpeg", ".png") | |
image_files = [] | |
for root, dirs, files in os.walk(dir): | |
for file in files: | |
if file.lower().endswith(image_extensions): | |
image_files.append(os.path.join(root, file)) | |
return image_files | |
def next_versus_image(versus_state): | |
images = get_example_images("versus_images") | |
versus_state["idx"] += 1 | |
if versus_state["idx"] > len(images): | |
versus_state["idx"] = 0 | |
versus_image = images[versus_state["idx"]] | |
versus_state["continent"] = versus_image.split("/")[-1].split("_")[0] | |
versus_state["country"] = versus_image.split("/")[-1].split("_")[1] | |
versus_state["lat"] = versus_image.split("/")[-1].split("_")[2] | |
versus_state["lon"] = versus_image.split("/")[-1].split("_")[3] | |
versus_state["image"] = versus_image | |
return versus_image, versus_state, None, None | |
demo = gr.Blocks() | |
with demo: | |
with gr.Tab("Image Geolocation Demo"): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Image", type="pil", | |
sources=["upload", "clipboard"]) | |
predict_btn = gr.Button("Predict") | |
example_images = get_example_images("kerger-test-images") | |
# example_images.extend(get_example_images("versus_images")) | |
gr.Examples(examples=example_images, | |
inputs=image, examples_per_page=24) | |
with gr.Column(): | |
continents_label = gr.Label(label="Continents") | |
country_label = gr.Label( | |
num_top_classes=5, label="Top countries") | |
# continents_label.select(predict_country, inputs=[image, continents_label], outputs=country_label) | |
predict_btn.click(predict, inputs=image, outputs=[ | |
continents_label, country_label]) | |
with gr.Tab("Versus Mode"): | |
versus_state = gr.State(value=INITAL_VERSUS_STATE) | |
with gr.Row(): | |
with gr.Column(): | |
versus_image = gr.Image( | |
INITAL_VERSUS_STATE["image"], interactive=False) | |
continent_selection = gr.Radio( | |
continents, label="Continents", info="Where was this image taken? (1 Point)") | |
country_selection = gr.Dropdown(countries, label="Countries", info="Can you guess the exact country? (2 Points)" | |
), | |
with gr.Row(): | |
next_img_btn = gr.Button("Try new image") | |
versus_btn = gr.Button("Submit guess") | |
with gr.Column(): | |
versus_output = gr.Markdown() | |
# with gr.Accordion("View Map", open=False): | |
map = gr.Plot(label="Locations") | |
with gr.Accordion("Full Model Output", open=False): | |
continents_label = gr.Label(label="Continents") | |
country_label = gr.Label( | |
num_top_classes=5, label="Top countries") | |
next_img_btn.click(next_versus_image, inputs=[versus_state], outputs=[versus_image, versus_state, continent_selection, country_selection[0]]) | |
versus_btn.click(versus_mode_inputs, inputs=[versus_image, continent_selection, country_selection[0], versus_state], outputs=[ | |
versus_output, continents_label, country_label, map, versus_state]) | |
if __name__ == "__main__": | |
demo.launch() | |