Spaces:
Runtime error
Runtime error
File size: 12,258 Bytes
0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea 0a2704b 4b77aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import numpy as np
import gradio as gr
from transformers import CLIPProcessor, CLIPModel
import torch
import itertools
import os
import plotly.graph_objects as go
CUDA_AVAILABLE = torch.cuda.is_available()
print(f"CUDA={CUDA_AVAILABLE}")
device = "cuda" if CUDA_AVAILABLE else "cpu"
print(f"count={torch.cuda.device_count()}")
print(f"current={torch.cuda.get_device_name(torch.cuda.current_device())}")
continent_model = CLIPModel.from_pretrained("model-checkpoints/continent")
country_model = CLIPModel.from_pretrained("model-checkpoints/country")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
continent_model = continent_model.to(device)
country_model = country_model.to(device)
continents = ["Africa", "Asia", "Europe",
"North America", "Oceania", "South America"]
countries_per_continent = {
"Africa": [
"Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Cabo Verde", "Cameroon",
"Central African Republic", "Congo", "Democratic Republic of the Congo",
"Djibouti", "Egypt", "Equatorial Guinea", "Eritrea", "Eswatini", "Ethiopia", "Gabon",
"Gambia", "Ghana", "Guinea", "Guinea-Bissau", "Ivory Coast", "Kenya", "Lesotho", "Liberia",
"Libya", "Madagascar", "Malawi", "Mali", "Mauritania", "Mauritius", "Morocco", "Mozambique",
"Namibia", "Niger", "Nigeria", "Rwanda", "Sao Tome and Principe", "Senegal", "Seychelles",
"Sierra Leone", "Somalia", "South Africa", "Sudan", "Tanzania", "Togo",
"Tunisia", "Uganda", "Zambia", "Zimbabwe"
],
"Asia": [
"Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bangladesh", "Bhutan", "Brunei",
"Cambodia", "China", "Cyprus", "Georgia", "India", "Indonesia", "Iran", "Iraq",
"Israel", "Japan", "Jordan", "Kazakhstan", "Kuwait", "Kyrgyzstan", "Laos", "Lebanon",
"Malaysia", "Maldives", "Mongolia", "Myanmar", "Nepal", "North Korea", "Oman", "Pakistan",
"Palestine", "Philippines", "Qatar", "Russia", "Saudi Arabia", "Singapore", "South Korea",
"Sri Lanka", "Syria", "Taiwan", "Tajikistan", "Thailand", "Timor-Leste", "Turkey",
"Turkmenistan", "United Arab Emirates", "Uzbekistan", "Vietnam", "Yemen"
],
"Europe": [
"Albania", "Armenia", "Austria", "Azerbaijan", "Belarus", "Belgium", "Bosnia and Herzegovina",
"Bulgaria", "Croatia", "Cyprus", "Czech Republic", "Denmark", "Estonia", "Finland", "France",
"Georgia", "Germany", "Greece", "Hungary", "Iceland", "Ireland", "Italy", "Kazakhstan",
"Kosovo", "Latvia", "Liechtenstein", "Lithuania", "Luxembourg", "Malta", "Moldova", "Monaco",
"Montenegro", "Netherlands", "North Macedonia", "Norway", "Poland", "Portugal", "Romania",
"Russia", "San Marino", "Serbia", "Slovakia", "Slovenia", "Spain", "Sweden", "Switzerland",
"Turkey", "Ukraine", "United Kingdom"
],
"North America": [
"Antigua and Barbuda", "Bahamas", "Barbados", "Belize", "Canada", "Costa Rica", "Cuba",
"Dominica", "Dominican Republic", "El Salvador", "Grenada", "Guatemala", "Haiti", "Honduras",
"Jamaica", "Mexico", "Nicaragua", "Panama", "Saint Kitts and Nevis", "Saint Lucia",
"Saint Vincent and the Grenadines", "Trinidad and Tobago", "United States"
],
"Oceania": [
"Australia", "Fiji", "Kiribati", "Marshall Islands", "Micronesia", "Nauru", "New Zealand",
"Palau", "Papua New Guinea", "Samoa", "Solomon Islands", "Tonga", "Tuvalu", "Vanuatu"
],
"South America": [
"Argentina", "Bolivia", "Brazil", "Chile", "Colombia", "Ecuador", "Guyana", "Paraguay",
"Peru", "Suriname", "Uruguay", "Venezuela"
]
}
countries = list(set(itertools.chain.from_iterable(
countries_per_continent.values())))
INTIAL_VERSUS_IMAGE = "versus_images/Europe_Germany_49.069183_10.319444_im2gps3k.jpg"
INITAL_VERSUS_STATE = {
"image": INTIAL_VERSUS_IMAGE,
"continent": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[0],
"country": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[1],
"lat": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[2],
"lon": INTIAL_VERSUS_IMAGE.split("/")[-1].split("_")[3],
"score": {
"HUMAN": 0,
"AI": 0
},
"idx": 0
}
def predict(input_img):
inputs = processor(text=[f"A photo from {
geo}." for geo in continents], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = continent_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
pred_id = probs.argmax().cpu().item()
continent_probs = {label: prob for label,
prob in zip(continents, probs.tolist()[0])}
predicted_continent_countries = countries_per_continent[continents[pred_id]]
inputs = processor(text=[f"A photo from {
geo}." for geo in predicted_continent_countries], images=input_img, return_tensors="pt", padding=True)
inputs = inputs.to(device)
with torch.no_grad():
outputs = country_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=-1)
country_probs = {label: prob for label, prob in zip(
predicted_continent_countries, probs.tolist()[0])}
return continent_probs, country_probs
def make_versus_map(human_country, model_country, versus_state):
fig = go.Figure()
fig.add_trace(go.Scattergeo(
lon=[versus_state["lon"]],
lat=[versus_state["lat"]],
text=["π·"],
mode='text+markers',
hoverinfo='text',
hovertext=f"Photo taken in {versus_state['country']}, {
versus_state['continent']}",
marker=dict(size=14, color='#00B945'),
showlegend=False
))
if human_country == model_country:
fig.add_trace(go.Scattergeo(
locations=[human_country],
locationmode='country names',
text=["π§π€"],
mode='text',
hoverinfo='location',
showlegend=False
))
else:
fig.add_trace(go.Scattergeo(
locations=[human_country],
locationmode='country names',
text=["π§"],
mode='text',
hoverinfo='location',
showlegend=False
))
fig.add_trace(go.Scattergeo(
locations=[model_country],
locationmode='country names',
text=["π€"],
mode='text',
hoverinfo='location',
showlegend=False
))
fig.update_geos(
visible=True, resolution=110,
showcountries=True, countrycolor="grey", fitbounds="locations", projection_type="natural earth",
)
return fig
def versus_mode_inputs(input_img, human_continent, human_country, versus_state):
human_points = 0
model_points = 0
if human_country == versus_state["country"]:
country_result = "β
"
human_points += 2
else:
country_result = "β"
if human_continent == versus_state["continent"]:
continent_result = "β
"
human_points += 1
else:
continent_result = "β"
human_result = f"The photo is from **{versus_state['country']}** {
country_result} in **{versus_state['continent']}** {continent_result}"
human_score_update = f"+{
human_points} points" if human_points > 0 else "Wrong guess, try a new image."
versus_state['score']['HUMAN'] += human_points
continent_probs, country_probs = predict(input_img)
model_country = max(country_probs, key=country_probs.get)
model_continent = max(continent_probs, key=continent_probs.get)
if model_country == versus_state["country"]:
model_country_result = "β
"
model_points += 2
else:
model_country_result = "β"
if model_continent == versus_state["continent"]:
model_continent_result = "β
"
model_points += 1
else:
model_continent_result = "β"
model_score_update = f"+{
model_points} points" if model_points > 0 else "The model was wrong, seems the world is not yet doomed."
versus_state['score']['AI'] += model_points
map = make_versus_map(human_country, model_country, versus_state)
return f"""
## {human_result}
### The AI π€ thinks this photo is from **{model_country}** {model_country_result} in **{model_continent}** {model_continent_result}
π§ {human_score_update}
π€ {model_score_update}
### Score π§ {versus_state['score']['HUMAN']} : {versus_state['score']['AI']} π€
""", continent_probs, country_probs, map, versus_state
def get_example_images(dir):
image_extensions = (".jpg", ".jpeg", ".png")
image_files = []
for root, dirs, files in os.walk(dir):
for file in files:
if file.lower().endswith(image_extensions):
image_files.append(os.path.join(root, file))
return image_files
def next_versus_image(versus_state):
images = get_example_images("versus_images")
versus_state["idx"] += 1
if versus_state["idx"] > len(images):
versus_state["idx"] = 0
versus_image = images[versus_state["idx"]]
versus_state["continent"] = versus_image.split("/")[-1].split("_")[0]
versus_state["country"] = versus_image.split("/")[-1].split("_")[1]
versus_state["lat"] = versus_image.split("/")[-1].split("_")[2]
versus_state["lon"] = versus_image.split("/")[-1].split("_")[3]
versus_state["image"] = versus_image
return versus_image, versus_state, None, None
demo = gr.Blocks()
with demo:
with gr.Tab("Image Geolocation Demo"):
with gr.Row():
with gr.Column():
image = gr.Image(label="Image", type="pil",
sources=["upload", "clipboard"])
predict_btn = gr.Button("Predict")
example_images = get_example_images("kerger-test-images")
# example_images.extend(get_example_images("versus_images"))
gr.Examples(examples=example_images,
inputs=image, examples_per_page=24)
with gr.Column():
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
# continents_label.select(predict_country, inputs=[image, continents_label], outputs=country_label)
predict_btn.click(predict, inputs=image, outputs=[
continents_label, country_label])
with gr.Tab("Versus Mode"):
versus_state = gr.State(value=INITAL_VERSUS_STATE)
with gr.Row():
with gr.Column():
versus_image = gr.Image(
INITAL_VERSUS_STATE["image"], interactive=False)
continent_selection = gr.Radio(
continents, label="Continents", info="Where was this image taken? (1 Point)")
country_selection = gr.Dropdown(countries, label="Countries", info="Can you guess the exact country? (2 Points)"
),
with gr.Row():
next_img_btn = gr.Button("Try new image")
versus_btn = gr.Button("Submit guess")
with gr.Column():
versus_output = gr.Markdown()
# with gr.Accordion("View Map", open=False):
map = gr.Plot(label="Locations")
with gr.Accordion("Full Model Output", open=False):
continents_label = gr.Label(label="Continents")
country_label = gr.Label(
num_top_classes=5, label="Top countries")
next_img_btn.click(next_versus_image, inputs=[versus_state], outputs=[versus_image, versus_state, continent_selection, country_selection[0]])
versus_btn.click(versus_mode_inputs, inputs=[versus_image, continent_selection, country_selection[0], versus_state], outputs=[
versus_output, continents_label, country_label, map, versus_state])
if __name__ == "__main__":
demo.launch()
|