Spaces:
Build error
Build error
# # Example usage | |
# import torch | |
# import numpy as np | |
# from PIL import Image | |
# from torchvision import transforms | |
# from config import LABELS_TO_IDS | |
# from utils.vis_utils import visualize_mask_with_overlay | |
# import torch | |
# import torch.nn.functional as F | |
# import numpy as np | |
# import cv2 | |
# TASK = 'depth' | |
# VERSION = 'sapiens_0.3b' | |
# model_path = get_model_path(TASK, VERSION) | |
# print(model_path) | |
# model = torch.jit.load(model_path) | |
# model.eval() | |
# model.to("cuda") | |
# def get_depth(image, depth_model, input_shape=(3, 1024, 768), device="cuda"): | |
# # Preprocess the image | |
# img = preprocess_image(image, input_shape) | |
# # Run the model | |
# with torch.no_grad(): | |
# result = depth_model(img.to(device)) | |
# # Post-process the output | |
# depth_map = post_process_depth(result, (image.shape[0], image.shape[1])) | |
# # Visualize the depth map | |
# depth_image = visualize_depth(depth_map) | |
# return depth_image, depth_map | |
# def preprocess_image(image, input_shape): | |
# img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1) | |
# img = torch.from_numpy(img) | |
# img = img[[2, 1, 0], ...].float() | |
# mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1) | |
# std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1) | |
# img = (img - mean) / std | |
# return img.unsqueeze(0) | |
# def post_process_depth(result, original_shape): | |
# # Check the dimensionality of the result | |
# if result.dim() == 3: | |
# result = result.unsqueeze(0) | |
# elif result.dim() == 4: | |
# pass | |
# else: | |
# raise ValueError(f"Unexpected result dimension: {result.dim()}") | |
# # Ensure we're interpolating to the correct dimensions | |
# seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0) | |
# depth_map = seg_logits.data.float().cpu().numpy() | |
# # If depth_map has an extra dimension, squeeze it | |
# if depth_map.ndim == 3 and depth_map.shape[0] == 1: | |
# depth_map = depth_map.squeeze(0) | |
# return depth_map | |
# def visualize_depth(depth_map): | |
# # Normalize the depth map | |
# min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map) | |
# depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val)) | |
# # Convert to uint8 | |
# depth_normalized = (depth_normalized * 255).astype(np.uint8) | |
# # Apply colormap | |
# depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO) | |
# return depth_colored | |
# # You can add the surface normal calculation if needed | |
# def calculate_surface_normal(depth_map): | |
# kernel_size = 7 | |
# grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size) | |
# grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size) | |
# z = np.full(grad_x.shape, -1) | |
# normals = np.dstack((-grad_x, -grad_y, z)) | |
# normals_mag = np.linalg.norm(normals, axis=2, keepdims=True) | |
# with np.errstate(divide="ignore", invalid="ignore"): | |
# normals_normalized = normals / (normals_mag + 1e-5) | |
# normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1) | |
# normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8) | |
# normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2 | |
# return normal_from_depth | |
# from utils.vis_utils import resize_image | |
# pil_image = Image.open('/home/user/app/assets/image.webp') | |
# # Load and process an image | |
# image = cv2.imread('/home/user/app/assets/frame.png') | |
# depth_image, depth_map = get_depth(image, model) | |
# surface_normal = calculate_surface_normal(depth_map) | |
# cv2.imwrite("output_surface_normal.jpg", surface_normal) | |
# # Save the results | |
# output_im = cv2.imwrite("output_depth_image2.jpg", depth_image) | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from config import SAPIENS_LITE_MODELS_PATH | |
def load_model(task, version): | |
try: | |
model_path = SAPIENS_LITE_MODELS_PATH[task][version] | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = torch.jit.load(model_path) | |
model.eval() | |
model.to(device) | |
return model, device | |
except KeyError as e: | |
print(f"Error: Tarea o versión inválida. {e}") | |
return None, None | |
def preprocess_image(image, input_shape): | |
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1) | |
img = torch.from_numpy(img) | |
img = img[[2, 1, 0], ...].float() | |
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1) | |
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1) | |
img = (img - mean) / std | |
return img.unsqueeze(0) | |
def post_process_depth(result, original_shape): | |
if result.dim() == 3: | |
result = result.unsqueeze(0) | |
elif result.dim() == 4: | |
pass | |
else: | |
raise ValueError(f"Unexpected result dimension: {result.dim()}") | |
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0) | |
depth_map = seg_logits.data.float().cpu().numpy() | |
if depth_map.ndim == 3 and depth_map.shape[0] == 1: | |
depth_map = depth_map.squeeze(0) | |
return depth_map | |
def visualize_depth(depth_map): | |
min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map) | |
depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val)) | |
depth_normalized = (depth_normalized * 255).astype(np.uint8) | |
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO) | |
return depth_colored | |
def calculate_surface_normal(depth_map): | |
kernel_size = 7 | |
grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size) | |
grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size) | |
z = np.full(grad_x.shape, -1) | |
normals = np.dstack((-grad_x, -grad_y, z)) | |
normals_mag = np.linalg.norm(normals, axis=2, keepdims=True) | |
with np.errstate(divide="ignore", invalid="ignore"): | |
normals_normalized = normals / (normals_mag + 1e-5) | |
normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1) | |
normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8) | |
normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2 | |
return normal_from_depth | |
def process_image_or_video(input_data, task='depth', version='sapiens_0.3b'): | |
model, device = load_model(task, version) | |
if model is None or device is None: | |
return None | |
input_shape = (3, 1024, 768) | |
def process_frame(frame): | |
if isinstance(frame, Image.Image): | |
frame = np.array(frame) | |
if frame.shape[2] == 4: # RGBA | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
img = preprocess_image(frame, input_shape) | |
with torch.no_grad(): | |
result = model(img.to(device)) | |
depth_map = post_process_depth(result, (frame.shape[0], frame.shape[1])) | |
depth_image = visualize_depth(depth_map) | |
return Image.fromarray(cv2.cvtColor(depth_image, cv2.COLOR_BGR2RGB)) | |
if isinstance(input_data, np.ndarray): # Video frame | |
return process_frame(input_data) | |
elif isinstance(input_data, Image.Image): # Imagen | |
return process_frame(input_data) | |
else: | |
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.") | |
return None |