Spaces:
Build error
Build error
File size: 7,620 Bytes
2e49a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# # Example usage
# import torch
# import numpy as np
# from PIL import Image
# from torchvision import transforms
# from config import LABELS_TO_IDS
# from utils.vis_utils import visualize_mask_with_overlay
# import torch
# import torch.nn.functional as F
# import numpy as np
# import cv2
# TASK = 'depth'
# VERSION = 'sapiens_0.3b'
# model_path = get_model_path(TASK, VERSION)
# print(model_path)
# model = torch.jit.load(model_path)
# model.eval()
# model.to("cuda")
# def get_depth(image, depth_model, input_shape=(3, 1024, 768), device="cuda"):
# # Preprocess the image
# img = preprocess_image(image, input_shape)
# # Run the model
# with torch.no_grad():
# result = depth_model(img.to(device))
# # Post-process the output
# depth_map = post_process_depth(result, (image.shape[0], image.shape[1]))
# # Visualize the depth map
# depth_image = visualize_depth(depth_map)
# return depth_image, depth_map
# def preprocess_image(image, input_shape):
# img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
# img = torch.from_numpy(img)
# img = img[[2, 1, 0], ...].float()
# mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
# std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
# img = (img - mean) / std
# return img.unsqueeze(0)
# def post_process_depth(result, original_shape):
# # Check the dimensionality of the result
# if result.dim() == 3:
# result = result.unsqueeze(0)
# elif result.dim() == 4:
# pass
# else:
# raise ValueError(f"Unexpected result dimension: {result.dim()}")
# # Ensure we're interpolating to the correct dimensions
# seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
# depth_map = seg_logits.data.float().cpu().numpy()
# # If depth_map has an extra dimension, squeeze it
# if depth_map.ndim == 3 and depth_map.shape[0] == 1:
# depth_map = depth_map.squeeze(0)
# return depth_map
# def visualize_depth(depth_map):
# # Normalize the depth map
# min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
# depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
# # Convert to uint8
# depth_normalized = (depth_normalized * 255).astype(np.uint8)
# # Apply colormap
# depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
# return depth_colored
# # You can add the surface normal calculation if needed
# def calculate_surface_normal(depth_map):
# kernel_size = 7
# grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
# grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
# z = np.full(grad_x.shape, -1)
# normals = np.dstack((-grad_x, -grad_y, z))
# normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
# with np.errstate(divide="ignore", invalid="ignore"):
# normals_normalized = normals / (normals_mag + 1e-5)
# normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
# normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
# normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
# return normal_from_depth
# from utils.vis_utils import resize_image
# pil_image = Image.open('/home/user/app/assets/image.webp')
# # Load and process an image
# image = cv2.imread('/home/user/app/assets/frame.png')
# depth_image, depth_map = get_depth(image, model)
# surface_normal = calculate_surface_normal(depth_map)
# cv2.imwrite("output_surface_normal.jpg", surface_normal)
# # Save the results
# output_im = cv2.imwrite("output_depth_image2.jpg", depth_image)
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
from config import SAPIENS_LITE_MODELS_PATH
def load_model(task, version):
try:
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.jit.load(model_path)
model.eval()
model.to(device)
return model, device
except KeyError as e:
print(f"Error: Tarea o versión inválida. {e}")
return None, None
def preprocess_image(image, input_shape):
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
img = torch.from_numpy(img)
img = img[[2, 1, 0], ...].float()
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
img = (img - mean) / std
return img.unsqueeze(0)
def post_process_depth(result, original_shape):
if result.dim() == 3:
result = result.unsqueeze(0)
elif result.dim() == 4:
pass
else:
raise ValueError(f"Unexpected result dimension: {result.dim()}")
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
depth_map = seg_logits.data.float().cpu().numpy()
if depth_map.ndim == 3 and depth_map.shape[0] == 1:
depth_map = depth_map.squeeze(0)
return depth_map
def visualize_depth(depth_map):
min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
depth_normalized = (depth_normalized * 255).astype(np.uint8)
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
return depth_colored
def calculate_surface_normal(depth_map):
kernel_size = 7
grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
z = np.full(grad_x.shape, -1)
normals = np.dstack((-grad_x, -grad_y, z))
normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
with np.errstate(divide="ignore", invalid="ignore"):
normals_normalized = normals / (normals_mag + 1e-5)
normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
return normal_from_depth
def process_image_or_video(input_data, task='depth', version='sapiens_0.3b'):
model, device = load_model(task, version)
if model is None or device is None:
return None
input_shape = (3, 1024, 768)
def process_frame(frame):
if isinstance(frame, Image.Image):
frame = np.array(frame)
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
img = preprocess_image(frame, input_shape)
with torch.no_grad():
result = model(img.to(device))
depth_map = post_process_depth(result, (frame.shape[0], frame.shape[1]))
depth_image = visualize_depth(depth_map)
return Image.fromarray(cv2.cvtColor(depth_image, cv2.COLOR_BGR2RGB))
if isinstance(input_data, np.ndarray): # Video frame
return process_frame(input_data)
elif isinstance(input_data, Image.Image): # Imagen
return process_frame(input_data)
else:
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.")
return None |