Spaces:
Runtime error
Runtime error
File size: 4,922 Bytes
23598cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
Credits to epool:
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
# Default hyperparameters:
hparams = Map({
'name': "wavenet_vocoder",
# Convenient model builder
'builder': "wavenet",
# Input type:
# 1. raw [-1, 1]
# 2. mulaw [-1, 1]
# 3. mulaw-quantize [0, mu]
# If input_type is raw or mulaw, network assumes scalar input and
# discretized mixture of logistic distributions output, otherwise one-hot
# input and softmax output are assumed.
# **NOTE**: if you change the one of the two parameters below, you need to
# re-run preprocessing before training.
'input_type': "raw",
'quantize_channels': 65536, # 65536 or 256
# Audio:
'sample_rate': 16000,
# this is only valid for mulaw is True
'silence_threshold': 2,
'num_mels': 80,
'fmin': 125,
'fmax': 7600,
'fft_size': 1024,
# shift can be specified by either hop_size or frame_shift_ms
'hop_size': 256,
'frame_shift_ms': None,
'min_level_db': -100,
'ref_level_db': 20,
# whether to rescale waveform or not.
# Let x is an input waveform, rescaled waveform y is given by:
# y = x / np.abs(x).max() * rescaling_max
'rescaling': True,
'rescaling_max': 0.999,
# mel-spectrogram is normalized to [0, 1] for each utterance and clipping may
# happen depends on min_level_db and ref_level_db, causing clipping noise.
# If False, assertion is added to ensure no clipping happens.o0
'allow_clipping_in_normalization': True,
# Mixture of logistic distributions:
'log_scale_min': float(-32.23619130191664),
# Model:
# This should equal to `quantize_channels` if mu-law quantize enabled
# otherwise num_mixture * 3 (pi, mean, log_scale)
'out_channels': 10 * 3,
'layers': 24,
'stacks': 4,
'residual_channels': 512,
'gate_channels': 512, # split into 2 gropus internally for gated activation
'skip_out_channels': 256,
'dropout': 1 - 0.95,
'kernel_size': 3,
# If True, apply weight normalization as same as DeepVoice3
'weight_normalization': True,
# Use legacy code or not. Default is True since we already provided a model
# based on the legacy code that can generate high-quality audio.
# Ref: https://github.com/r9y9/wavenet_vocoder/pull/73
'legacy': True,
# Local conditioning (set negative value to disable))
'cin_channels': 80,
# If True, use transposed convolutions to upsample conditional features,
# otherwise repeat features to adjust time resolution
'upsample_conditional_features': True,
# should np.prod(upsample_scales) == hop_size
'upsample_scales': [4, 4, 4, 4],
# Freq axis kernel size for upsampling network
'freq_axis_kernel_size': 3,
# Global conditioning (set negative value to disable)
# currently limited for speaker embedding
# this should only be enabled for multi-speaker dataset
'gin_channels': -1, # i.e., speaker embedding dim
'n_speakers': -1,
# Data loader
'pin_memory': True,
'num_workers': 2,
# train/test
# test size can be specified as portion or num samples
'test_size': 0.0441, # 50 for CMU ARCTIC single speaker
'test_num_samples': None,
'random_state': 1234,
# Loss
# Training:
'batch_size': 2,
'adam_beta1': 0.9,
'adam_beta2': 0.999,
'adam_eps': 1e-8,
'amsgrad': False,
'initial_learning_rate': 1e-3,
# see lrschedule.py for available lr_schedule
'lr_schedule': "noam_learning_rate_decay",
'lr_schedule_kwargs': {}, # {"anneal_rate": 0.5, "anneal_interval": 50000},
'nepochs': 2000,
'weight_decay': 0.0,
'clip_thresh': -1,
# max time steps can either be specified as sec or steps
# if both are None, then full audio samples are used in a batch
'max_time_sec': None,
'max_time_steps': 8000,
# Hold moving averaged parameters and use them for evaluation
'exponential_moving_average': True,
# averaged = decay * averaged + (1 - decay) * x
'ema_decay': 0.9999,
# Save
# per-step intervals
'checkpoint_interval': 10000,
'train_eval_interval': 10000,
# per-epoch interval
'test_eval_epoch_interval': 5,
'save_optimizer_state': True,
# Eval:
})
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp) |