Spaces:
Runtime error
Runtime error
Create hparams.py
Browse files- hparams.py +167 -0
hparams.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class Map(dict):
|
| 2 |
+
"""
|
| 3 |
+
Example:
|
| 4 |
+
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
|
| 5 |
+
|
| 6 |
+
Credits to epool:
|
| 7 |
+
https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
def __init__(self, *args, **kwargs):
|
| 11 |
+
super(Map, self).__init__(*args, **kwargs)
|
| 12 |
+
for arg in args:
|
| 13 |
+
if isinstance(arg, dict):
|
| 14 |
+
for k, v in arg.items():
|
| 15 |
+
self[k] = v
|
| 16 |
+
|
| 17 |
+
if kwargs:
|
| 18 |
+
for k, v in kwargs.iteritems():
|
| 19 |
+
self[k] = v
|
| 20 |
+
|
| 21 |
+
def __getattr__(self, attr):
|
| 22 |
+
return self.get(attr)
|
| 23 |
+
|
| 24 |
+
def __setattr__(self, key, value):
|
| 25 |
+
self.__setitem__(key, value)
|
| 26 |
+
|
| 27 |
+
def __setitem__(self, key, value):
|
| 28 |
+
super(Map, self).__setitem__(key, value)
|
| 29 |
+
self.__dict__.update({key: value})
|
| 30 |
+
|
| 31 |
+
def __delattr__(self, item):
|
| 32 |
+
self.__delitem__(item)
|
| 33 |
+
|
| 34 |
+
def __delitem__(self, key):
|
| 35 |
+
super(Map, self).__delitem__(key)
|
| 36 |
+
del self.__dict__[key]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Default hyperparameters:
|
| 40 |
+
hparams = Map({
|
| 41 |
+
'name': "wavenet_vocoder",
|
| 42 |
+
|
| 43 |
+
# Convenient model builder
|
| 44 |
+
'builder': "wavenet",
|
| 45 |
+
|
| 46 |
+
# Input type:
|
| 47 |
+
# 1. raw [-1, 1]
|
| 48 |
+
# 2. mulaw [-1, 1]
|
| 49 |
+
# 3. mulaw-quantize [0, mu]
|
| 50 |
+
# If input_type is raw or mulaw, network assumes scalar input and
|
| 51 |
+
# discretized mixture of logistic distributions output, otherwise one-hot
|
| 52 |
+
# input and softmax output are assumed.
|
| 53 |
+
# **NOTE**: if you change the one of the two parameters below, you need to
|
| 54 |
+
# re-run preprocessing before training.
|
| 55 |
+
'input_type': "raw",
|
| 56 |
+
'quantize_channels': 65536, # 65536 or 256
|
| 57 |
+
|
| 58 |
+
# Audio:
|
| 59 |
+
'sample_rate': 16000,
|
| 60 |
+
# this is only valid for mulaw is True
|
| 61 |
+
'silence_threshold': 2,
|
| 62 |
+
'num_mels': 80,
|
| 63 |
+
'fmin': 125,
|
| 64 |
+
'fmax': 7600,
|
| 65 |
+
'fft_size': 1024,
|
| 66 |
+
# shift can be specified by either hop_size or frame_shift_ms
|
| 67 |
+
'hop_size': 256,
|
| 68 |
+
'frame_shift_ms': None,
|
| 69 |
+
'min_level_db': -100,
|
| 70 |
+
'ref_level_db': 20,
|
| 71 |
+
# whether to rescale waveform or not.
|
| 72 |
+
# Let x is an input waveform, rescaled waveform y is given by:
|
| 73 |
+
# y = x / np.abs(x).max() * rescaling_max
|
| 74 |
+
'rescaling': True,
|
| 75 |
+
'rescaling_max': 0.999,
|
| 76 |
+
# mel-spectrogram is normalized to [0, 1] for each utterance and clipping may
|
| 77 |
+
# happen depends on min_level_db and ref_level_db, causing clipping noise.
|
| 78 |
+
# If False, assertion is added to ensure no clipping happens.o0
|
| 79 |
+
'allow_clipping_in_normalization': True,
|
| 80 |
+
|
| 81 |
+
# Mixture of logistic distributions:
|
| 82 |
+
'log_scale_min': float(-32.23619130191664),
|
| 83 |
+
|
| 84 |
+
# Model:
|
| 85 |
+
# This should equal to `quantize_channels` if mu-law quantize enabled
|
| 86 |
+
# otherwise num_mixture * 3 (pi, mean, log_scale)
|
| 87 |
+
'out_channels': 10 * 3,
|
| 88 |
+
'layers': 24,
|
| 89 |
+
'stacks': 4,
|
| 90 |
+
'residual_channels': 512,
|
| 91 |
+
'gate_channels': 512, # split into 2 gropus internally for gated activation
|
| 92 |
+
'skip_out_channels': 256,
|
| 93 |
+
'dropout': 1 - 0.95,
|
| 94 |
+
'kernel_size': 3,
|
| 95 |
+
# If True, apply weight normalization as same as DeepVoice3
|
| 96 |
+
'weight_normalization': True,
|
| 97 |
+
# Use legacy code or not. Default is True since we already provided a model
|
| 98 |
+
# based on the legacy code that can generate high-quality audio.
|
| 99 |
+
# Ref: https://github.com/r9y9/wavenet_vocoder/pull/73
|
| 100 |
+
'legacy': True,
|
| 101 |
+
|
| 102 |
+
# Local conditioning (set negative value to disable))
|
| 103 |
+
'cin_channels': 80,
|
| 104 |
+
# If True, use transposed convolutions to upsample conditional features,
|
| 105 |
+
# otherwise repeat features to adjust time resolution
|
| 106 |
+
'upsample_conditional_features': True,
|
| 107 |
+
# should np.prod(upsample_scales) == hop_size
|
| 108 |
+
'upsample_scales': [4, 4, 4, 4],
|
| 109 |
+
# Freq axis kernel size for upsampling network
|
| 110 |
+
'freq_axis_kernel_size': 3,
|
| 111 |
+
|
| 112 |
+
# Global conditioning (set negative value to disable)
|
| 113 |
+
# currently limited for speaker embedding
|
| 114 |
+
# this should only be enabled for multi-speaker dataset
|
| 115 |
+
'gin_channels': -1, # i.e., speaker embedding dim
|
| 116 |
+
'n_speakers': -1,
|
| 117 |
+
|
| 118 |
+
# Data loader
|
| 119 |
+
'pin_memory': True,
|
| 120 |
+
'num_workers': 2,
|
| 121 |
+
|
| 122 |
+
# train/test
|
| 123 |
+
# test size can be specified as portion or num samples
|
| 124 |
+
'test_size': 0.0441, # 50 for CMU ARCTIC single speaker
|
| 125 |
+
'test_num_samples': None,
|
| 126 |
+
'random_state': 1234,
|
| 127 |
+
|
| 128 |
+
# Loss
|
| 129 |
+
|
| 130 |
+
# Training:
|
| 131 |
+
'batch_size': 2,
|
| 132 |
+
'adam_beta1': 0.9,
|
| 133 |
+
'adam_beta2': 0.999,
|
| 134 |
+
'adam_eps': 1e-8,
|
| 135 |
+
'amsgrad': False,
|
| 136 |
+
'initial_learning_rate': 1e-3,
|
| 137 |
+
# see lrschedule.py for available lr_schedule
|
| 138 |
+
'lr_schedule': "noam_learning_rate_decay",
|
| 139 |
+
'lr_schedule_kwargs': {}, # {"anneal_rate": 0.5, "anneal_interval": 50000},
|
| 140 |
+
'nepochs': 2000,
|
| 141 |
+
'weight_decay': 0.0,
|
| 142 |
+
'clip_thresh': -1,
|
| 143 |
+
# max time steps can either be specified as sec or steps
|
| 144 |
+
# if both are None, then full audio samples are used in a batch
|
| 145 |
+
'max_time_sec': None,
|
| 146 |
+
'max_time_steps': 8000,
|
| 147 |
+
# Hold moving averaged parameters and use them for evaluation
|
| 148 |
+
'exponential_moving_average': True,
|
| 149 |
+
# averaged = decay * averaged + (1 - decay) * x
|
| 150 |
+
'ema_decay': 0.9999,
|
| 151 |
+
|
| 152 |
+
# Save
|
| 153 |
+
# per-step intervals
|
| 154 |
+
'checkpoint_interval': 10000,
|
| 155 |
+
'train_eval_interval': 10000,
|
| 156 |
+
# per-epoch interval
|
| 157 |
+
'test_eval_epoch_interval': 5,
|
| 158 |
+
'save_optimizer_state': True,
|
| 159 |
+
|
| 160 |
+
# Eval:
|
| 161 |
+
})
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def hparams_debug_string():
|
| 165 |
+
values = hparams.values()
|
| 166 |
+
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
|
| 167 |
+
return 'Hyperparameters:\n' + '\n'.join(hp)
|