Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import spaces #0.32.0 | |
import torch | |
import os | |
import platform | |
import requests | |
model = "" | |
duration = None | |
token = os.getenv('deepseekv2') | |
provider = None #'fal-ai' #None #replicate # sambanova | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
print(f"CUDA version: {torch.version.cuda}") | |
print(f"Python version: {platform.python_version()}") | |
print(f"Pytorch version: {torch.__version__}") | |
print(f"Gradio version: {gr. __version__}") | |
# print(f"HFhub version: {huggingface_hub.__version__}") | |
""" | |
Packages :::::::::: | |
Is CUDA available: True | |
CUDA device: NVIDIA A100-SXM4-80GB MIG 3g.40gb | |
CUDA version: 12.1 | |
Python version: 3.10.13 | |
Pytorch version: 2.4.0+cu121 | |
Gradio version: 5.0.1 | |
""" | |
def choose_model(model_name): | |
if model_name == "DeepSeek-R1-Distill-Qwen-1.5B": | |
model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" | |
elif model_name == "DeepSeek-R1-Distill-Qwen-32B": | |
model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" | |
elif model_name == "Llama3-8b-Instruct": | |
model = "meta-llama/Meta-Llama-3-8B-Instruct" | |
elif model_name == "Llama3.1-8b-Instruct": | |
model = "meta-llama/Llama-3.1-8B-Instruct" | |
elif model_name == "Llama2-13b-chat": | |
model = "meta-llama/Llama-2-13b-chat-hf" | |
elif model_name == "Gemma-2-2b": | |
model = "google/gemma-2-2b-it" | |
elif model_name == "Gemma-7b": | |
model = "google/gemma-7b" | |
elif model_name == "Mixtral-8x7B-Instruct": | |
model = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
elif model_name == "Microsoft-phi-2": | |
model = "microsoft/phi-2" | |
elif model_name == "Qwen2.5-Coder-32B-Instruct": | |
model = "Qwen/Qwen2.5-Coder-32B-Instruct" | |
else: # default to zephyr if no model chosen | |
model = "HuggingFaceH4/zephyr-7b-beta" | |
return model | |
def respond(message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p): | |
print(model) | |
model_name = choose_model(model) | |
client = InferenceClient(model_name, provider=provider, token=os.getenv('deepseekv2')) | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
title="Ask me anything", | |
description="Hi there! I am your friendly AI chatbot. Choose from different language models under the Additional Inputs tab below.", | |
examples=[["Explain quantum computing"], ["Explain forex trading"], ["What is the capital of China?"], ["Make a poem about nature"]], | |
additional_inputs=[ | |
gr.Dropdown(["DeepSeek-R1-Distill-Qwen-1.5B", "DeepSeek-R1-Distill-Qwen-32B", "Gemma-2-2b", "Gemma-7b", "Llama2-13b-chat", "Llama3-8b-Instruct", "Llama3.1-8b-Instruct", "Microsoft-phi-2", "Mixtral-8x7B-Instruct", "Qwen2.5-Coder-32B-Instruct", "Zephyr-7b-beta"], label="Select Model"), | |
gr.Textbox(value="You are a friendly and helpful Chatbot, be concise and straight to the point, avoid excessive reasoning.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |