import gradio as gr from huggingface_hub import InferenceClient import spaces #0.32.0 import torch import os import platform import requests model = "" duration = None token = os.getenv('deepseekv2') provider = None #'fal-ai' #None #replicate # sambanova print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") print(f"CUDA version: {torch.version.cuda}") print(f"Python version: {platform.python_version()}") print(f"Pytorch version: {torch.__version__}") print(f"Gradio version: {gr. __version__}") # print(f"HFhub version: {huggingface_hub.__version__}") """ Packages :::::::::: Is CUDA available: True CUDA device: NVIDIA A100-SXM4-80GB MIG 3g.40gb CUDA version: 12.1 Python version: 3.10.13 Pytorch version: 2.4.0+cu121 Gradio version: 5.0.1 """ def choose_model(model_name): if model_name == "DeepSeek-R1-Distill-Qwen-1.5B": model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" elif model_name == "DeepSeek-R1-Distill-Qwen-32B": model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" elif model_name == "Llama3-8b-Instruct": model = "meta-llama/Meta-Llama-3-8B-Instruct" elif model_name == "Llama3.1-8b-Instruct": model = "meta-llama/Llama-3.1-8B-Instruct" elif model_name == "Llama2-13b-chat": model = "meta-llama/Llama-2-13b-chat-hf" elif model_name == "Gemma-2-2b": model = "google/gemma-2-2b-it" elif model_name == "Gemma-7b": model = "google/gemma-7b" elif model_name == "Mixtral-8x7B-Instruct": model = "mistralai/Mixtral-8x7B-Instruct-v0.1" elif model_name == "Microsoft-phi-2": model = "microsoft/phi-2" elif model_name == "Qwen2.5-Coder-32B-Instruct": model = "Qwen/Qwen2.5-Coder-32B-Instruct" else: # default to zephyr if no model chosen model = "HuggingFaceH4/zephyr-7b-beta" return model @spaces.GPU(duration=duration) def respond(message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p): print(model) model_name = choose_model(model) client = InferenceClient(model_name, provider=provider, token=os.getenv('deepseekv2')) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, title="Ask me anything", description="Hi there! I am your friendly AI chatbot. Choose from different language models under the Additional Inputs tab below.", examples=[["Explain quantum computing"], ["Explain forex trading"], ["What is the capital of China?"], ["Make a poem about nature"]], additional_inputs=[ gr.Dropdown(["DeepSeek-R1-Distill-Qwen-1.5B", "DeepSeek-R1-Distill-Qwen-32B", "Gemma-2-2b", "Gemma-7b", "Llama2-13b-chat", "Llama3-8b-Instruct", "Llama3.1-8b-Instruct", "Microsoft-phi-2", "Mixtral-8x7B-Instruct", "Qwen2.5-Coder-32B-Instruct", "Zephyr-7b-beta"], label="Select Model"), gr.Textbox(value="You are a friendly and helpful Chatbot, be concise and straight to the point, avoid excessive reasoning.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") ] ) if __name__ == "__main__": demo.launch(share=True)