Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
@@ -5,18 +6,11 @@ import gradio as gr
|
|
5 |
from ormbg import ORMBG
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
9 |
model_path = "ormbg.pth"
|
10 |
|
|
|
11 |
net = ORMBG()
|
12 |
-
|
13 |
-
net.to(device)
|
14 |
-
|
15 |
-
if torch.cuda.is_available():
|
16 |
-
net.load_state_dict(torch.load(model_path))
|
17 |
-
net = net.cuda()
|
18 |
-
else:
|
19 |
-
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
20 |
net.eval()
|
21 |
|
22 |
|
@@ -27,9 +21,14 @@ def resize_image(image):
|
|
27 |
return image
|
28 |
|
29 |
|
|
|
|
|
30 |
def inference(image):
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
orig_image = Image.fromarray(image)
|
34 |
w, h = orig_image.size
|
35 |
image = resize_image(orig_image)
|
@@ -37,50 +36,42 @@ def inference(image):
|
|
37 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
38 |
im_tensor = torch.unsqueeze(im_tensor, 0)
|
39 |
im_tensor = torch.divide(im_tensor, 255.0)
|
|
|
40 |
if torch.cuda.is_available():
|
41 |
-
im_tensor = im_tensor.
|
42 |
|
43 |
-
#
|
44 |
result = net(im_tensor)
|
45 |
-
#
|
46 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
47 |
ma = torch.max(result)
|
48 |
mi = torch.min(result)
|
49 |
result = (result - mi) / (ma - mi)
|
50 |
-
#
|
51 |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
52 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
-
#
|
54 |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
55 |
new_im.paste(orig_image, mask=pil_im)
|
56 |
|
57 |
return new_im
|
58 |
|
59 |
|
60 |
-
|
61 |
-
gr.HTML(
|
62 |
-
"""
|
63 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
64 |
-
This is a demo for Open Remove Background Model (ormbg) that using
|
65 |
-
<a href="https://huggingface.co/schirrmacher/ormbg" target="_blank">Open Remove Background Model (ormbg) model</a> as backbone.
|
66 |
-
</p>
|
67 |
-
"""
|
68 |
-
)
|
69 |
title = "Open Remove Background Model (ormbg)"
|
70 |
description = r"""
|
71 |
This model is a <strong>fully open-source background remover</strong> optimized for images with humans.
|
72 |
-
|
73 |
It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS).
|
74 |
The model was trained with the synthetic [Human Segmentation Dataset](https://huggingface.co/datasets/schirrmacher/humans).
|
75 |
|
76 |
This is the first iteration of the model, so there will be improvements!
|
77 |
-
If you identify cases
|
78 |
|
79 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
80 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
81 |
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
82 |
-
|
83 |
"""
|
|
|
84 |
examples = ["./example1.png", "./example2.png", "./example3.png"]
|
85 |
|
86 |
demo = gr.Interface(
|
|
|
1 |
+
import spaces
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
|
|
6 |
from ormbg import ORMBG
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
model_path = "ormbg.pth"
|
10 |
|
11 |
+
# Load the model globally but don't send to device yet
|
12 |
net = ORMBG()
|
13 |
+
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
net.eval()
|
15 |
|
16 |
|
|
|
21 |
return image
|
22 |
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
+
@torch.inference_mode()
|
26 |
def inference(image):
|
27 |
+
# Check for CUDA and set the device inside inference
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
net.to(device)
|
30 |
|
31 |
+
# Prepare input
|
32 |
orig_image = Image.fromarray(image)
|
33 |
w, h = orig_image.size
|
34 |
image = resize_image(orig_image)
|
|
|
36 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
37 |
im_tensor = torch.unsqueeze(im_tensor, 0)
|
38 |
im_tensor = torch.divide(im_tensor, 255.0)
|
39 |
+
|
40 |
if torch.cuda.is_available():
|
41 |
+
im_tensor = im_tensor.to(device)
|
42 |
|
43 |
+
# Inference
|
44 |
result = net(im_tensor)
|
45 |
+
# Post process
|
46 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
47 |
ma = torch.max(result)
|
48 |
mi = torch.min(result)
|
49 |
result = (result - mi) / (ma - mi)
|
50 |
+
# Image to PIL
|
51 |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
52 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
+
# Paste the mask on the original image
|
54 |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
55 |
new_im.paste(orig_image, mask=pil_im)
|
56 |
|
57 |
return new_im
|
58 |
|
59 |
|
60 |
+
# Gradio interface setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
title = "Open Remove Background Model (ormbg)"
|
62 |
description = r"""
|
63 |
This model is a <strong>fully open-source background remover</strong> optimized for images with humans.
|
|
|
64 |
It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS).
|
65 |
The model was trained with the synthetic [Human Segmentation Dataset](https://huggingface.co/datasets/schirrmacher/humans).
|
66 |
|
67 |
This is the first iteration of the model, so there will be improvements!
|
68 |
+
If you identify cases where the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>!
|
69 |
|
70 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
71 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
72 |
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
|
|
73 |
"""
|
74 |
+
|
75 |
examples = ["./example1.png", "./example2.png", "./example3.png"]
|
76 |
|
77 |
demo = gr.Interface(
|