Upload folder using huggingface_hub
Browse files- .gitattributes +3 -4
- app.py +31 -19
- example1.jpeg +3 -0
- example2.jpeg +3 -0
- example3.jpeg +3 -0
.gitattributes
CHANGED
@@ -33,7 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
example1.
|
37 |
-
example2.
|
38 |
-
example3.
|
39 |
-
examples.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example1.jpeg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
example2.jpeg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
example3.jpeg filter=lfs diff=lfs merge=lfs -text
|
|
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import spaces
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
@@ -6,27 +5,31 @@ import gradio as gr
|
|
6 |
from ormbg import ORMBG
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
model_path = "ormbg.pth"
|
10 |
|
11 |
-
# Load the model globally but don't send to device yet
|
12 |
net = ORMBG()
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
net.eval()
|
15 |
|
|
|
16 |
def resize_image(image):
|
17 |
image = image.convert("RGB")
|
18 |
model_input_size = (1024, 1024)
|
19 |
image = image.resize(model_input_size, Image.BILINEAR)
|
20 |
return image
|
21 |
|
22 |
-
|
23 |
-
@torch.inference_mode()
|
24 |
def inference(image):
|
25 |
-
# Check for CUDA and set the device inside inference
|
26 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
net.to(device)
|
28 |
|
29 |
-
#
|
30 |
orig_image = Image.fromarray(image)
|
31 |
w, h = orig_image.size
|
32 |
image = resize_image(orig_image)
|
@@ -34,41 +37,50 @@ def inference(image):
|
|
34 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
35 |
im_tensor = torch.unsqueeze(im_tensor, 0)
|
36 |
im_tensor = torch.divide(im_tensor, 255.0)
|
37 |
-
|
38 |
if torch.cuda.is_available():
|
39 |
-
im_tensor = im_tensor.
|
40 |
|
41 |
-
#
|
42 |
result = net(im_tensor)
|
43 |
-
#
|
44 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
45 |
ma = torch.max(result)
|
46 |
mi = torch.min(result)
|
47 |
result = (result - mi) / (ma - mi)
|
48 |
-
#
|
49 |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
50 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
51 |
-
#
|
52 |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
53 |
new_im.paste(orig_image, mask=pil_im)
|
54 |
|
55 |
return new_im
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
title = "Open Remove Background Model (ormbg)"
|
59 |
description = r"""
|
60 |
This model is a <strong>fully open-source background remover</strong> optimized for images with humans.
|
|
|
61 |
It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS).
|
62 |
The model was trained with the synthetic [Human Segmentation Dataset](https://huggingface.co/datasets/schirrmacher/humans).
|
63 |
|
64 |
This is the first iteration of the model, so there will be improvements!
|
65 |
-
If you identify cases
|
66 |
|
67 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
68 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
69 |
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
70 |
-
"""
|
71 |
|
|
|
72 |
examples = ["./example1.png", "./example2.png", "./example3.png"]
|
73 |
|
74 |
demo = gr.Interface(
|
@@ -77,7 +89,7 @@ demo = gr.Interface(
|
|
77 |
outputs="image",
|
78 |
examples=examples,
|
79 |
title=title,
|
80 |
-
description=description
|
81 |
)
|
82 |
|
83 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
import torch.nn.functional as F
|
|
|
5 |
from ormbg import ORMBG
|
6 |
from PIL import Image
|
7 |
|
8 |
+
|
9 |
model_path = "ormbg.pth"
|
10 |
|
|
|
11 |
net = ORMBG()
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
net.to(device)
|
14 |
+
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
net.load_state_dict(torch.load(model_path))
|
17 |
+
net = net.cuda()
|
18 |
+
else:
|
19 |
+
net.load_state_dict(torch.load(model_path, map_location="cpu"))
|
20 |
net.eval()
|
21 |
|
22 |
+
|
23 |
def resize_image(image):
|
24 |
image = image.convert("RGB")
|
25 |
model_input_size = (1024, 1024)
|
26 |
image = image.resize(model_input_size, Image.BILINEAR)
|
27 |
return image
|
28 |
|
29 |
+
|
|
|
30 |
def inference(image):
|
|
|
|
|
|
|
31 |
|
32 |
+
# prepare input
|
33 |
orig_image = Image.fromarray(image)
|
34 |
w, h = orig_image.size
|
35 |
image = resize_image(orig_image)
|
|
|
37 |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
|
38 |
im_tensor = torch.unsqueeze(im_tensor, 0)
|
39 |
im_tensor = torch.divide(im_tensor, 255.0)
|
|
|
40 |
if torch.cuda.is_available():
|
41 |
+
im_tensor = im_tensor.cuda()
|
42 |
|
43 |
+
# inference
|
44 |
result = net(im_tensor)
|
45 |
+
# post process
|
46 |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
|
47 |
ma = torch.max(result)
|
48 |
mi = torch.min(result)
|
49 |
result = (result - mi) / (ma - mi)
|
50 |
+
# image to pil
|
51 |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
|
52 |
pil_im = Image.fromarray(np.squeeze(im_array))
|
53 |
+
# paste the mask on the original image
|
54 |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
|
55 |
new_im.paste(orig_image, mask=pil_im)
|
56 |
|
57 |
return new_im
|
58 |
|
59 |
+
|
60 |
+
gr.Markdown("## Open Remove Background Model (ormbg)")
|
61 |
+
gr.HTML(
|
62 |
+
"""
|
63 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
64 |
+
This is a demo for Open Remove Background Model (ormbg) that using
|
65 |
+
<a href="https://huggingface.co/schirrmacher/ormbg" target="_blank">Open Remove Background Model (ormbg) model</a> as backbone.
|
66 |
+
</p>
|
67 |
+
"""
|
68 |
+
)
|
69 |
title = "Open Remove Background Model (ormbg)"
|
70 |
description = r"""
|
71 |
This model is a <strong>fully open-source background remover</strong> optimized for images with humans.
|
72 |
+
|
73 |
It is based on [Highly Accurate Dichotomous Image Segmentation research](https://github.com/xuebinqin/DIS).
|
74 |
The model was trained with the synthetic [Human Segmentation Dataset](https://huggingface.co/datasets/schirrmacher/humans).
|
75 |
|
76 |
This is the first iteration of the model, so there will be improvements!
|
77 |
+
If you identify cases were the model fails, <a href='https://huggingface.co/schirrmacher/ormbg/discussions' target='_blank'>upload your examples</a>!
|
78 |
|
79 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Model card</a>: find inference code, training information, tutorials
|
80 |
- <a href='https://huggingface.co/schirrmacher/ormbg' target='_blank'>Dataset</a>: see training images, segmentation data, backgrounds
|
81 |
- <a href='https://huggingface.co/schirrmacher/ormbg\#research' target='_blank'>Research</a>: see current approach for improvements
|
|
|
82 |
|
83 |
+
"""
|
84 |
examples = ["./example1.png", "./example2.png", "./example3.png"]
|
85 |
|
86 |
demo = gr.Interface(
|
|
|
89 |
outputs="image",
|
90 |
examples=examples,
|
91 |
title=title,
|
92 |
+
description=description,
|
93 |
)
|
94 |
|
95 |
if __name__ == "__main__":
|
example1.jpeg
ADDED
![]() |
Git LFS Details
|
example2.jpeg
ADDED
![]() |
Git LFS Details
|
example3.jpeg
ADDED
![]() |
Git LFS Details
|