Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify, Response, stream_with_context | |
from huggingface_hub import InferenceClient | |
import time | |
# Initialize Flask app | |
app = Flask(__name__) | |
print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output | |
# Initialize InferenceClient | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
print(f"\nUser: {prompt}\n", flush=True) | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
try: | |
# Get response from Mistral model | |
response = client.text_generation( | |
formatted_prompt, | |
**generate_kwargs, | |
stream=True, | |
details=True, | |
return_full_text=False | |
) | |
output = "" | |
buffer = [] | |
buffer_size = 5 # Adjust the buffer size as needed | |
for token in response: | |
buffer.append(token.token.text) | |
if len(buffer) >= buffer_size: | |
chunk = ''.join(buffer) | |
yield chunk | |
buffer.clear() | |
time.sleep(0.1) # Introduce a delay to manage the flow of data | |
if buffer: | |
yield ''.join(buffer) | |
# Print AI response | |
print(f"\nSema AI: {output}\n, flush=True") | |
except Exception as e: | |
print(f"Exception during generation: {str(e)}") | |
yield "Error occurred" | |
def generate_text(): | |
data = request.json | |
prompt = data.get("prompt", "") | |
history = data.get("history", []) | |
temperature = data.get("temperature", 0.9) | |
max_new_tokens = data.get("max_new_tokens", 256) | |
top_p = data.get("top_p", 0.95) | |
repetition_penalty = data.get("repetition_penalty", 1.0) | |
try: | |
return Response(stream_with_context(generate( | |
prompt, | |
history, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty | |
)), content_type='text/plain') | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == "__main__": | |
app.run(debug=True, port=5000) | |