llamaSMS / stream.py
Tri4's picture
Rename main.py to stream.py
a4db3e3 verified
from flask import Flask, request, jsonify, Response, stream_with_context
from huggingface_hub import InferenceClient
import time
# Initialize Flask app
app = Flask(__name__)
print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output
# Initialize InferenceClient
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
print(f"\nUser: {prompt}\n", flush=True)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
try:
# Get response from Mistral model
response = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False
)
output = ""
buffer = []
buffer_size = 5 # Adjust the buffer size as needed
for token in response:
buffer.append(token.token.text)
if len(buffer) >= buffer_size:
chunk = ''.join(buffer)
yield chunk
buffer.clear()
time.sleep(0.1) # Introduce a delay to manage the flow of data
if buffer:
yield ''.join(buffer)
# Print AI response
print(f"\nSema AI: {output}\n, flush=True")
except Exception as e:
print(f"Exception during generation: {str(e)}")
yield "Error occurred"
@app.route("/generate", methods=["POST"])
def generate_text():
data = request.json
prompt = data.get("prompt", "")
history = data.get("history", [])
temperature = data.get("temperature", 0.9)
max_new_tokens = data.get("max_new_tokens", 256)
top_p = data.get("top_p", 0.95)
repetition_penalty = data.get("repetition_penalty", 1.0)
try:
return Response(stream_with_context(generate(
prompt,
history,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty
)), content_type='text/plain')
except Exception as e:
print(f"Error: {str(e)}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(debug=True, port=5000)