from flask import Flask, request, jsonify, Response, stream_with_context from huggingface_hub import InferenceClient import time # Initialize Flask app app = Flask(__name__) print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output # Initialize InferenceClient client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): print(f"\nUser: {prompt}\n", flush=True) temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) try: # Get response from Mistral model response = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False ) output = "" buffer = [] buffer_size = 5 # Adjust the buffer size as needed for token in response: buffer.append(token.token.text) if len(buffer) >= buffer_size: chunk = ''.join(buffer) yield chunk buffer.clear() time.sleep(0.1) # Introduce a delay to manage the flow of data if buffer: yield ''.join(buffer) # Print AI response print(f"\nSema AI: {output}\n, flush=True") except Exception as e: print(f"Exception during generation: {str(e)}") yield "Error occurred" @app.route("/generate", methods=["POST"]) def generate_text(): data = request.json prompt = data.get("prompt", "") history = data.get("history", []) temperature = data.get("temperature", 0.9) max_new_tokens = data.get("max_new_tokens", 256) top_p = data.get("top_p", 0.95) repetition_penalty = data.get("repetition_penalty", 1.0) try: return Response(stream_with_context(generate( prompt, history, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty )), content_type='text/plain') except Exception as e: print(f"Error: {str(e)}") return jsonify({"error": str(e)}), 500 if __name__ == "__main__": app.run(debug=True, port=5000)