Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/main-checkpoint.py +4 -2
- main.py +4 -2
.ipynb_checkpoints/main-checkpoint.py
CHANGED
@@ -4,8 +4,10 @@ from transformers import pipeline
|
|
4 |
pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifier_Plain-V0")
|
5 |
|
6 |
def predict(input_img):
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
gradio_app = gr.Interface(
|
11 |
predict,
|
|
|
4 |
pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifier_Plain-V0")
|
5 |
|
6 |
def predict(input_img):
|
7 |
+
pred = pipeline(input_img)
|
8 |
+
label = ['Benign','Indeterminate','Malignant']
|
9 |
+
answer = f'We predict that you have {label[pred['label']]} type of skin cancer,\n with confidence score of: {pred['score']*100:.2f}%'
|
10 |
+
return answer
|
11 |
|
12 |
gradio_app = gr.Interface(
|
13 |
predict,
|
main.py
CHANGED
@@ -4,8 +4,10 @@ from transformers import pipeline
|
|
4 |
pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifier_Plain-V0")
|
5 |
|
6 |
def predict(input_img):
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
gradio_app = gr.Interface(
|
11 |
predict,
|
|
|
4 |
pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifier_Plain-V0")
|
5 |
|
6 |
def predict(input_img):
|
7 |
+
pred = pipeline(input_img)
|
8 |
+
label = ['Benign','Indeterminate','Malignant']
|
9 |
+
answer = f'We predict that you have {label[pred['label']]} type of skin cancer,\n with confidence score of: {pred['score']*100:.2f}%'
|
10 |
+
return answer
|
11 |
|
12 |
gradio_app = gr.Interface(
|
13 |
predict,
|