Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/main-checkpoint.py +18 -0
- main.py +2 -2
.ipynb_checkpoints/main-checkpoint.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifier_Plain-V0")
|
5 |
+
|
6 |
+
def predict(input_img):
|
7 |
+
predictions = pipeline(input_img)
|
8 |
+
return predictions
|
9 |
+
|
10 |
+
gradio_app = gr.Interface(
|
11 |
+
predict,
|
12 |
+
inputs=gr.Image(label="Input Skin Image", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs="text",
|
14 |
+
title="How severe is my Skin Cancer?",
|
15 |
+
)
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
gradio_app.launch()
|
main.py
CHANGED
@@ -5,12 +5,12 @@ pipeline = pipeline("image-classification", model="jhoppanne/SkinCancerClassifie
|
|
5 |
|
6 |
def predict(input_img):
|
7 |
predictions = pipeline(input_img)
|
8 |
-
return
|
9 |
|
10 |
gradio_app = gr.Interface(
|
11 |
predict,
|
12 |
inputs=gr.Image(label="Input Skin Image", sources=['upload', 'webcam'], type="pil"),
|
13 |
-
outputs=
|
14 |
title="How severe is my Skin Cancer?",
|
15 |
)
|
16 |
|
|
|
5 |
|
6 |
def predict(input_img):
|
7 |
predictions = pipeline(input_img)
|
8 |
+
return predictions
|
9 |
|
10 |
gradio_app = gr.Interface(
|
11 |
predict,
|
12 |
inputs=gr.Image(label="Input Skin Image", sources=['upload', 'webcam'], type="pil"),
|
13 |
+
outputs="text",
|
14 |
title="How severe is my Skin Cancer?",
|
15 |
)
|
16 |
|