jfataphd commited on
Commit
6337933
·
1 Parent(s): e32c352

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -155,7 +155,7 @@ if query:
155
  '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
156
  df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
157
 
158
- df['database'] = database_name
159
 
160
 
161
  # print(sizes)
@@ -188,7 +188,7 @@ if query:
188
  mime='text/csv')
189
  except:
190
  st.warning(
191
- f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
192
 
193
  st.markdown("---")
194
  # st.write(short_table)
@@ -196,10 +196,10 @@ if query:
196
 
197
  # print()
198
  # print("Human genes similar to " + str(query))
199
- df1 = table
200
  df2 = pd.read_csv('Human_Genes.csv')
201
  m = df1.Word.isin(df2.symbol)
202
- df1 = df1[m]
203
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
204
  df1["Human Gene"] = df1["Human Gene"].str.upper()
205
  # print(df1.head(50))
@@ -224,7 +224,7 @@ if query:
224
  f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
225
  unsafe_allow_html=True)
226
 
227
- df10 = df1.head(value_gene)
228
  df10.index = (1 / df10.index)*10000
229
  sizes = df10.index.tolist()
230
  df10.set_index('Human Gene', inplace=True)
@@ -250,8 +250,8 @@ if query:
250
  df10['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10['text']]
251
 
252
  df10['name'] = [c for c in result['Approved name']]
253
-
254
- df10['database'] = database_name
255
 
256
  # print(df['name'])
257
 
@@ -288,7 +288,7 @@ if query:
288
 
289
  except:
290
  st.warning(
291
- f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
292
  st.markdown("---")
293
 
294
  # st.write(short_table)
@@ -296,7 +296,7 @@ if query:
296
 
297
  # print()
298
  # print("Human genes similar to " + str(query))
299
- df1 = table
300
  df2 = pd.read_csv('protein.csv')
301
  m = df1.Word.isin(df2.protein)
302
  df1 = df1[m]
@@ -328,8 +328,7 @@ if query:
328
  f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and Wikipedia links for more protein information</span></p></b>",
329
  unsafe_allow_html=True)
330
 
331
- df11 = df1.head(value_protein)
332
- print(df11)
333
 
334
  df11.index = (1 / df11.index) * 10000
335
  sizes = df11.index.tolist()
@@ -353,7 +352,7 @@ if query:
353
  df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
354
  '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
355
  df11['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df11['text']]
356
-
357
  df11['database'] = database_name
358
 
359
  # df11['name'] = [c for c in result['Approved name']]
@@ -387,7 +386,7 @@ if query:
387
 
388
 
389
  else:
390
- st.warning(f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus")
391
  st.markdown("---")
392
 
393
 
 
155
  '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
156
  df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
157
 
158
+ df.loc[:,'database'] = database_name
159
 
160
 
161
  # print(sizes)
 
188
  mime='text/csv')
189
  except:
190
  st.warning(
191
+ f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus, please choose a lower number")
192
 
193
  st.markdown("---")
194
  # st.write(short_table)
 
196
 
197
  # print()
198
  # print("Human genes similar to " + str(query))
199
+ df1 = table.copy()
200
  df2 = pd.read_csv('Human_Genes.csv')
201
  m = df1.Word.isin(df2.symbol)
202
+ df1 = df1[m].loc[:,:]
203
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
204
  df1["Human Gene"] = df1["Human Gene"].str.upper()
205
  # print(df1.head(50))
 
224
  f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
225
  unsafe_allow_html=True)
226
 
227
+ df10 = df1.head(value_gene).copy()
228
  df10.index = (1 / df10.index)*10000
229
  sizes = df10.index.tolist()
230
  df10.set_index('Human Gene', inplace=True)
 
250
  df10['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10['text']]
251
 
252
  df10['name'] = [c for c in result['Approved name']]
253
+ assert isinstance(df10, object)
254
+ df10.loc[:,'database'] = database_name
255
 
256
  # print(df['name'])
257
 
 
288
 
289
  except:
290
  st.warning(
291
+ f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus, please choose a lower number")
292
  st.markdown("---")
293
 
294
  # st.write(short_table)
 
296
 
297
  # print()
298
  # print("Human genes similar to " + str(query))
299
+ df1 = table.copy()
300
  df2 = pd.read_csv('protein.csv')
301
  m = df1.Word.isin(df2.protein)
302
  df1 = df1[m]
 
328
  f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and Wikipedia links for more protein information</span></p></b>",
329
  unsafe_allow_html=True)
330
 
331
+ df11 = df1.head(value_protein).copy()
 
332
 
333
  df11.index = (1 / df11.index) * 10000
334
  sizes = df11.index.tolist()
 
352
  df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
353
  '+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
354
  df11['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df11['text']]
355
+ assert isinstance(df11, object)
356
  df11['database'] = database_name
357
 
358
  # df11['name'] = [c for c in result['Approved name']]
 
386
 
387
 
388
  else:
389
+ st.warning(f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus, please choose a lower number")
390
  st.markdown("---")
391
 
392