Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -85,16 +85,16 @@ if query:
|
|
| 85 |
bar.progress((i + 1) * 10)
|
| 86 |
time.sleep(.1)
|
| 87 |
|
| 88 |
-
try:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
except:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
st.markdown("---")
|
| 99 |
# def findRelationships(query, df):
|
| 100 |
|
|
@@ -133,62 +133,61 @@ if query:
|
|
| 133 |
unsafe_allow_html=True)
|
| 134 |
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
|
| 154 |
-
|
| 155 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
|
| 156 |
-
|
| 157 |
|
| 158 |
-
|
| 159 |
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
hover_name=(table2.head(value_word)['SIMILARITY']))
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
| 172 |
texttemplate="</b><br><span "
|
| 173 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
| 174 |
"<a href='%{customdata[0]}'>PubMed"
|
| 175 |
"</a><br><a href='%{customdata[3]}'>Wikipedia"
|
| 176 |
"</span></a>")
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
mime='text/csv')
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
st.warning(
|
| 192 |
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
|
| 193 |
|
| 194 |
st.markdown("---")
|
|
@@ -204,7 +203,7 @@ if query:
|
|
| 204 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
| 205 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
| 206 |
# print(df1.head(50))
|
| 207 |
-
print()
|
| 208 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
| 209 |
# time.sleep(2)
|
| 210 |
# Create the slider with increments of 5 up to 100
|
|
@@ -214,82 +213,184 @@ if query:
|
|
| 214 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
| 215 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
| 216 |
unsafe_allow_html=True)
|
| 217 |
-
|
| 218 |
-
if
|
| 219 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
| 220 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
| 221 |
|
| 222 |
st.markdown(
|
| 223 |
-
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{
|
| 224 |
f"</span>genes similar to "
|
| 225 |
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
|
| 226 |
unsafe_allow_html=True)
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
| 266 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
| 267 |
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}</span></b><br><span "
|
| 268 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
| 269 |
"<a href='%{customdata[0]}'>PubMed"
|
| 270 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
| 271 |
"</span></a>")
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
|
| 282 |
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
mime='text/csv')
|
| 287 |
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
| 292 |
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
st.subheader("Cancer-related videos")
|
| 294 |
if query:
|
| 295 |
idlist=[]
|
|
|
|
| 85 |
bar.progress((i + 1) * 10)
|
| 86 |
time.sleep(.1)
|
| 87 |
|
| 88 |
+
# try:
|
| 89 |
+
model = Word2Vec.load(model_used) # you can continue training with the loaded model!
|
| 90 |
+
words = list(model.wv.key_to_index)
|
| 91 |
+
X = model.wv[model.wv.key_to_index]
|
| 92 |
+
model2 = model.wv[query]
|
| 93 |
+
df = pd.DataFrame(X)
|
| 94 |
+
|
| 95 |
+
# except:
|
| 96 |
+
# st.error("Term occurrence is too low - please try another term")
|
| 97 |
+
# st.stop()
|
| 98 |
st.markdown("---")
|
| 99 |
# def findRelationships(query, df):
|
| 100 |
|
|
|
|
| 133 |
unsafe_allow_html=True)
|
| 134 |
|
| 135 |
|
| 136 |
+
# calculate the sizes of the squares in the treemap
|
| 137 |
+
short_table = table2.head(value_word).round(2)
|
| 138 |
+
short_table.index += 1
|
| 139 |
+
short_table.index = (1 / short_table.index)*10
|
| 140 |
+
sizes = short_table.index.tolist()
|
| 141 |
|
| 142 |
|
| 143 |
+
short_table.set_index('Word', inplace=True)
|
| 144 |
+
# label = short_table.index.tolist()
|
| 145 |
+
# print(short_table.index)
|
| 146 |
+
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
|
| 147 |
+
rank_num = list(short_table.index.tolist())
|
| 148 |
+
# avg_size = sum(sizes) / len(short_table.index)
|
| 149 |
+
df = short_table
|
| 150 |
+
try:
|
| 151 |
+
# Define the `text` column for labels and `href` column for links
|
| 152 |
+
df['text'] = short_table.index
|
| 153 |
|
| 154 |
+
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
| 155 |
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
|
| 156 |
+
df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
|
| 157 |
|
| 158 |
+
df['database'] = database_name
|
| 159 |
|
| 160 |
|
| 161 |
+
# print(sizes)
|
| 162 |
+
# '{0} in {1}'.format(unicode(self.author, 'utf-8'), unicode(self.publication, 'utf-8'))
|
| 163 |
+
# Create the treemap using `px.treemap`
|
| 164 |
+
fig = px.treemap(df, path=[short_table.index], values=sizes, custom_data=['href', 'text', 'database', 'href2'],
|
| 165 |
hover_name=(table2.head(value_word)['SIMILARITY']))
|
| 166 |
|
| 167 |
+
fig.update(layout_coloraxis_showscale=False)
|
| 168 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
| 169 |
+
fig.update_annotations(visible=False)
|
| 170 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
| 171 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
| 172 |
texttemplate="</b><br><span "
|
| 173 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
| 174 |
"<a href='%{customdata[0]}'>PubMed"
|
| 175 |
"</a><br><a href='%{customdata[3]}'>Wikipedia"
|
| 176 |
"</span></a>")
|
| 177 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightgreen"])
|
| 178 |
|
| 179 |
+
# st.pyplot(fig2)
|
| 180 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 181 |
|
| 182 |
+
# st.caption(
|
| 183 |
+
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
| 184 |
+
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
| 185 |
|
| 186 |
+
csv = table2.head(value_word).to_csv().encode('utf-8')
|
| 187 |
+
st.download_button(label=f"download top {value_word} words (csv)", data=csv, file_name=f'{database_name}_words.csv',
|
| 188 |
mime='text/csv')
|
| 189 |
+
except:
|
| 190 |
+
st.warning(
|
|
|
|
| 191 |
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus")
|
| 192 |
|
| 193 |
st.markdown("---")
|
|
|
|
| 203 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
| 204 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
| 205 |
# print(df1.head(50))
|
| 206 |
+
# print()
|
| 207 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
| 208 |
# time.sleep(2)
|
| 209 |
# Create the slider with increments of 5 up to 100
|
|
|
|
| 213 |
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
| 214 |
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
| 215 |
unsafe_allow_html=True)
|
| 216 |
+
value_gene = st.slider("Gene", 0, 100, step=5)
|
| 217 |
+
if value_gene > 0:
|
| 218 |
# st.subheader(f"Top {value} genes closely related to {query}: "
|
| 219 |
# f"Click on the Pubmed and NCBI links for more gene information")
|
| 220 |
|
| 221 |
st.markdown(
|
| 222 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_gene} "
|
| 223 |
f"</span>genes similar to "
|
| 224 |
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and NCBI links for more gene information</span></p></b>",
|
| 225 |
unsafe_allow_html=True)
|
| 226 |
|
| 227 |
+
df10 = df1.head(value_gene)
|
| 228 |
+
df10.index = (1 / df10.index)*10000
|
| 229 |
+
sizes = df10.index.tolist()
|
| 230 |
+
df10.set_index('Human Gene', inplace=True)
|
| 231 |
+
|
| 232 |
+
df3 = df1.copy()
|
| 233 |
+
df3["SIMILARITY"] = 'Similarity Score ' + df3.head(value_gene)["SIMILARITY"].round(2).astype(str)
|
| 234 |
+
df3.reset_index(inplace=True)
|
| 235 |
+
df3 = df3.rename(columns={'Human Gene': 'symbol2'})
|
| 236 |
+
# Use df.query to get a subset of df1 based on ids in df2
|
| 237 |
+
subset = df3.head(value_gene).query('symbol2 in @df2.symbol2')
|
| 238 |
+
# Use merge to join the two DataFrames on id
|
| 239 |
+
result = pd.merge(subset, df2, on='symbol2')
|
| 240 |
+
# Show the result
|
| 241 |
+
# print(result)
|
| 242 |
+
# label = df10.index.tolist()
|
| 243 |
+
# df2 = df10
|
| 244 |
+
# print(df2)
|
| 245 |
+
try:
|
| 246 |
+
# Define the `text` column for labels and `href` column for links
|
| 247 |
+
df10['text'] = df10.index
|
| 248 |
+
df10['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
| 249 |
+
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df10['text']]
|
| 250 |
+
df10['href2'] = [f'https://www.ncbi.nlm.nih.gov/gene/?term=' + c for c in df10['text']]
|
| 251 |
+
|
| 252 |
+
df10['name'] = [c for c in result['Approved name']]
|
| 253 |
+
|
| 254 |
+
df10['database'] = database_name
|
| 255 |
+
|
| 256 |
+
# print(df['name'])
|
| 257 |
+
|
| 258 |
+
# Create the treemap using `px.treemap`
|
| 259 |
+
fig = px.treemap(df10, path=[df10['text']], values=sizes,
|
| 260 |
+
custom_data=['href', 'name', 'database', 'href2', 'text'], hover_name=(df3.head(value_gene)['SIMILARITY']))
|
| 261 |
+
|
| 262 |
+
fig.update(layout_coloraxis_showscale=False)
|
| 263 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
| 264 |
+
fig.update_annotations(visible=False)
|
| 265 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
| 266 |
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
| 267 |
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[4]}</span></b><br><span "
|
| 268 |
"style='font-family: Arial; font-size: 15px;'>%{customdata[1]}<br>"
|
| 269 |
"<a href='%{customdata[0]}'>PubMed"
|
| 270 |
"</a><br><a href='%{customdata[3]}'>NCBI"
|
| 271 |
"</span></a>")
|
| 272 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
|
| 273 |
+
# # display the treemap in Streamlit
|
| 274 |
+
# with treemap2:
|
| 275 |
|
| 276 |
+
# st.pyplot(fig2)
|
| 277 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 278 |
|
| 279 |
+
st.caption("Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
| 280 |
+
st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
|
| 281 |
|
| 282 |
|
| 283 |
|
| 284 |
+
csv = df1.head(value_gene).to_csv().encode('utf-8')
|
| 285 |
+
st.download_button(label=f"download top {value_gene} genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
| 286 |
mime='text/csv')
|
| 287 |
|
| 288 |
|
| 289 |
+
except:
|
| 290 |
+
st.warning(
|
| 291 |
f"This selection exceeds the number of similar genes related to {query} within the {database_name} corpus")
|
| 292 |
st.markdown("---")
|
| 293 |
+
|
| 294 |
+
# st.write(short_table)
|
| 295 |
+
#
|
| 296 |
+
|
| 297 |
+
# print()
|
| 298 |
+
# print("Human genes similar to " + str(query))
|
| 299 |
+
df1 = table
|
| 300 |
+
df2 = pd.read_csv('protein.csv')
|
| 301 |
+
m = df1.Word.isin(df2.protein)
|
| 302 |
+
df1 = df1[m]
|
| 303 |
+
df1.rename(columns={'Word': 'Protein'}, inplace=True)
|
| 304 |
+
# print(df1)
|
| 305 |
+
df_len = len(df1)
|
| 306 |
+
# df1["Protein"] = df1["Protein"].str.upper()
|
| 307 |
+
# print(df1.head(50))
|
| 308 |
+
# print()
|
| 309 |
+
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
| 310 |
+
# time.sleep(2)
|
| 311 |
+
# Create the slider with increments of 5 up to 100
|
| 312 |
+
|
| 313 |
+
st.markdown(
|
| 314 |
+
f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap with the slider below to visualize "
|
| 315 |
+
f"<span style='color:red; font-style: italic;'>proteins</span> contextually "
|
| 316 |
+
f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
|
| 317 |
+
f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
|
| 318 |
+
unsafe_allow_html=True)
|
| 319 |
+
value_protein = st.slider("Protein", 0, 100, step=5)
|
| 320 |
+
# print(value_protein)
|
| 321 |
+
if value_protein > 0:
|
| 322 |
+
# st.subheader(f"Top {value} genes closely related to {query}: "
|
| 323 |
+
# f"Click on the Pubmed and NCBI links for more gene information")
|
| 324 |
+
|
| 325 |
+
st.markdown(
|
| 326 |
+
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_protein} "
|
| 327 |
+
f"</span>proteins similar to "
|
| 328 |
+
f"<span style='color:red; font-style: italic;'>{query}:</span> Click on the squares to expand and the Pubmed and Wikipedia links for more protein information</span></p></b>",
|
| 329 |
+
unsafe_allow_html=True)
|
| 330 |
+
|
| 331 |
+
df11 = df1.head(value_protein)
|
| 332 |
+
print(df11)
|
| 333 |
+
|
| 334 |
+
df11.index = (1 / df11.index) * 10000
|
| 335 |
+
sizes = df11.index.tolist()
|
| 336 |
+
|
| 337 |
+
df11.set_index('Protein', inplace=True)
|
| 338 |
+
|
| 339 |
+
df4 = df1.copy()
|
| 340 |
+
# print(df4.head(10))
|
| 341 |
+
df4["SIMILARITY"] = 'Similarity Score ' + df4.head(value_protein)["SIMILARITY"].round(2).astype(str)
|
| 342 |
+
df4.reset_index(inplace=True)
|
| 343 |
+
# df4 = df4.rename(columns={'Protein': 'symbol2'})
|
| 344 |
+
# print(df4)
|
| 345 |
+
# # Use df.query to get a subset of df1 based on ids in df2
|
| 346 |
+
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
|
| 347 |
+
# # Use merge to join the two DataFrames on id
|
| 348 |
+
# result = pd.merge(subset, df2b, on='symbol2')
|
| 349 |
+
# print(result)
|
| 350 |
+
if value_protein <= df_len:
|
| 351 |
+
# Define the `text` column for labels and `href` column for links
|
| 352 |
+
df11['text'] = df11.index
|
| 353 |
+
df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
|
| 354 |
+
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
|
| 355 |
+
df11['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df11['text']]
|
| 356 |
+
|
| 357 |
+
df11['database'] = database_name
|
| 358 |
+
|
| 359 |
+
# df11['name'] = [c for c in result['Approved name']]
|
| 360 |
+
|
| 361 |
+
# Create the treemap using `px.treemap`
|
| 362 |
+
fig = px.treemap(df11, path=[df11['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
|
| 363 |
+
hover_name=(df4.head(value_protein)['SIMILARITY']))
|
| 364 |
+
|
| 365 |
+
fig.update(layout_coloraxis_showscale=False)
|
| 366 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
|
| 367 |
+
fig.update_annotations(visible=False)
|
| 368 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
| 369 |
+
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
|
| 370 |
+
texttemplate="<b><span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}</span></b><br>"
|
| 371 |
+
"<a href='%{customdata[0]}'>PubMed"
|
| 372 |
+
"</a><br><a href='%{customdata[2]}'>Wikipedia"
|
| 373 |
+
"</span></a>")
|
| 374 |
+
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightblue"])
|
| 375 |
+
# # display the treemap in Streamlit
|
| 376 |
+
# with treemap2:
|
| 377 |
+
|
| 378 |
+
# st.pyplot(fig2)
|
| 379 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 380 |
+
|
| 381 |
+
st.caption(
|
| 382 |
+
"Protein designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
|
| 383 |
+
|
| 384 |
+
csv = df1.head(value_protein).to_csv().encode('utf-8')
|
| 385 |
+
st.download_button(label=f"download top {value_protein} proteins (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
| 386 |
+
mime='text/csv')
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
else:
|
| 390 |
+
st.warning(f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus")
|
| 391 |
+
st.markdown("---")
|
| 392 |
+
|
| 393 |
+
|
| 394 |
st.subheader("Cancer-related videos")
|
| 395 |
if query:
|
| 396 |
idlist=[]
|