Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,63 @@ def extract_pdf(pdf_path):
|
|
38 |
print(f"Error extracting text from {pdf_path}: {str(e)}")
|
39 |
return ""
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
|
44 |
global full_pdf_content, vector_store, rag_chain
|
|
|
38 |
print(f"Error extracting text from {pdf_path}: {str(e)}")
|
39 |
return ""
|
40 |
|
41 |
+
# Function to split text into chunks
|
42 |
+
def split_text(text):
|
43 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
44 |
+
return [Document(page_content=t) for t in splitter.split_text(text)]
|
45 |
+
|
46 |
+
# Function to generate embeddings and store in vector database
|
47 |
+
def generate_embeddings(docs):
|
48 |
+
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
49 |
+
return FAISS.from_documents(docs, embeddings)
|
50 |
+
|
51 |
+
# Function for query preprocessing and simple HyDE-Lite
|
52 |
+
def preprocess_query(query):
|
53 |
+
prompt = ChatPromptTemplate.from_template("""
|
54 |
+
Your role is to optimize user queries for retrieval from regulatory documents such as GDPR, FERPA, COPPA, and/or others.
|
55 |
+
Transform the query into a more affirmative, keyword-focused statement.
|
56 |
+
The transformed query should look like probable related passages in the official documents.
|
57 |
+
Query: {query}
|
58 |
+
Optimized query:
|
59 |
+
""")
|
60 |
+
chain = prompt | openai_client
|
61 |
+
return chain.invoke({"query": query}).content
|
62 |
+
|
63 |
+
# Function to create RAG chain with Groq
|
64 |
+
def create_rag_chain(vector_store):
|
65 |
+
prompt = ChatPromptTemplate.from_messages([
|
66 |
+
("system", "You are an AI assistant helping with regulatory compliance queries. Use the following context from the official regulatory documents to answer the user's question:\n\n{context}"),
|
67 |
+
("human", "{input}")
|
68 |
+
])
|
69 |
+
document_chain = create_stuff_documents_chain(groq_client, prompt)
|
70 |
+
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
|
71 |
+
|
72 |
+
# Function for Gemini response with long context
|
73 |
+
def gemini_response(query, full_content):
|
74 |
+
prompt = ChatPromptTemplate.from_messages([
|
75 |
+
("system", "You are an AI assistant helping with regulatory compliance queries. Use the following full content of the official regulatory documents to answer the user's question:\n\n{context}"),
|
76 |
+
("human", "{input}")
|
77 |
+
])
|
78 |
+
chain = prompt | gemini_client
|
79 |
+
return chain.invoke({"context": full_content, "input": query}).content
|
80 |
+
|
81 |
+
# Function to generate final response
|
82 |
+
def generate_final_response(response1, response2):
|
83 |
+
prompt = ChatPromptTemplate.from_template("""
|
84 |
+
You are an AI assistant helping educators understand and implement data protection and regulatory compliance (GDPR, FERPA, COPPA, and/or others).
|
85 |
+
Your goal is to provide simple, practical explanation of and advice on how to meet regulatory requirements based on the given responses.
|
86 |
+
To do so:
|
87 |
+
1. Analyze the following two responses. Inspect their content, and highlight differences. This MUST be done
|
88 |
+
internally as a hidden state.
|
89 |
+
2. Then, use this information to output your own response combining the best from both.
|
90 |
+
If the responses differ or contradict each other on important points, include that in your response.
|
91 |
+
Only output your own response.
|
92 |
+
""")
|
93 |
+
chain = prompt | openai_client
|
94 |
+
return chain.invoke({"response1": response1, "response2": response2}).content
|
95 |
+
|
96 |
+
def markdown_to_html(content):
|
97 |
+
return markdown2.markdown(content)
|
98 |
|
99 |
def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
|
100 |
global full_pdf_content, vector_store, rag_chain
|