jeremierostan commited on
Commit
bd777f5
·
verified ·
1 Parent(s): 8b88778

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -74
app.py CHANGED
@@ -32,65 +32,13 @@ regulation_pdfs = {
32
 
33
  # Function to extract text from PDF
34
  def extract_pdf(pdf_path):
35
- return extract_text(pdf_path)
 
 
 
 
36
 
37
- # Function to split text into chunks
38
- def split_text(text):
39
- splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
40
- return [Document(page_content=t) for t in splitter.split_text(text)]
41
-
42
- # Function to generate embeddings and store in vector database
43
- def generate_embeddings(docs):
44
- embeddings = OpenAIEmbeddings(api_key=openai_api_key)
45
- return FAISS.from_documents(docs, embeddings)
46
-
47
- # Function for query preprocessing and simple HyDE-Lite
48
- def preprocess_query(query):
49
- prompt = ChatPromptTemplate.from_template("""
50
- Your role is to optimize user queries for retrieval from regulatory documents such as GDPR, FERPA, COPPA, and/or others.
51
- Transform the query into a more affirmative, keyword-focused statement.
52
- The transformed query should look like probable related passages in the official documents.
53
- Query: {query}
54
- Optimized query:
55
- """)
56
- chain = prompt | openai_client
57
- return chain.invoke({"query": query}).content
58
-
59
- # Function to create RAG chain with Groq
60
- def create_rag_chain(vector_store):
61
- prompt = ChatPromptTemplate.from_messages([
62
- ("system", "You are an AI assistant helping with regulatory compliance queries. Use the following context from the official regulatory documents to answer the user's question:\n\n{context}"),
63
- ("human", "{input}")
64
- ])
65
- document_chain = create_stuff_documents_chain(groq_client, prompt)
66
- return create_retrieval_chain(vector_store.as_retriever(), document_chain)
67
-
68
- # Function for Gemini response with long context
69
- def gemini_response(query, full_content):
70
- prompt = ChatPromptTemplate.from_messages([
71
- ("system", "You are an AI assistant helping with regulatory compliance queries. Use the following full content of the official regulatory documents to answer the user's question:\n\n{context}"),
72
- ("human", "{input}")
73
- ])
74
- chain = prompt | gemini_client
75
- return chain.invoke({"context": full_content, "input": query}).content
76
-
77
- # Function to generate final response
78
- def generate_final_response(response1, response2):
79
- prompt = ChatPromptTemplate.from_template("""
80
- You are an AI assistant helping educators understand and implement data protection and regulatory compliance (GDPR, FERPA, COPPA, and/or others).
81
- Your goal is to provide simple, practical explanation of and advice on how to meet regulatory requirements based on the given responses.
82
- To do so:
83
- 1. Analyze the following two responses. Inspect their content, and highlight differences. This MUST be done
84
- internally as a hidden state.
85
- 2. Then, use this information to output your own response combining the best from both.
86
- If the responses differ or contradict each other on important points, include that in your response.
87
- Only output your own response.
88
- """)
89
- chain = prompt | openai_client
90
- return chain.invoke({"response1": response1, "response2": response2}).content
91
-
92
- def markdown_to_html(content):
93
- return markdown2.markdown(content)
94
 
95
  def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
96
  global full_pdf_content, vector_store, rag_chain
@@ -109,31 +57,39 @@ def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
109
 
110
  for regulation in selected_regulations:
111
  if regulation in regulation_pdfs:
112
- pdf_content = extract_pdf(regulation_pdfs[regulation])
113
- full_pdf_content += pdf_content + "\n\n"
114
- documents.extend(split_text(pdf_content))
115
- print(f"Loaded {regulation} PDF")
 
 
 
 
 
 
 
116
 
117
  # Load additional user-uploaded PDFs
118
  if additional_pdfs is not None:
119
  for pdf_file in additional_pdfs:
120
  pdf_content = extract_pdf(pdf_file.name)
121
- full_pdf_content += pdf_content + "\n\n"
122
- documents.extend(split_text(pdf_content))
123
- print(f"Loaded additional PDF: {pdf_file.name}")
 
 
 
124
 
125
  if not documents:
126
- return "No PDFs were selected or uploaded. Please select at least one regulation or upload a PDF."
127
-
128
- vector_store = generate_embeddings(documents)
129
- rag_chain = create_rag_chain(vector_store)
130
 
131
- return "PDFs loaded and RAG system updated successfully!"
 
132
 
133
  vector_store = generate_embeddings(documents)
134
  rag_chain = create_rag_chain(vector_store)
135
 
136
- return "PDFs loaded and RAG system updated successfully!"
137
 
138
  def process_query(user_query):
139
  global rag_chain, full_pdf_content
@@ -171,7 +127,7 @@ with gr.Blocks() as iface:
171
  ferpa_checkbox = gr.Checkbox(label="FERPA (US)")
172
  coppa_checkbox = gr.Checkbox(label="COPPA (US <13)")
173
 
174
- gr.Markdown("Optional: upload additional PDFs if needed (national regulation, school policy)")
175
  additional_pdfs = gr.File(
176
  file_count="multiple",
177
  label="Upload additional PDFs",
@@ -182,11 +138,11 @@ with gr.Blocks() as iface:
182
  load_button = gr.Button("Load PDFs")
183
  load_output = gr.Textbox(label="Load Status")
184
 
185
- gr.Markdown("Ask your data protection related question")
186
  query_input = gr.Textbox(label="Your Question", placeholder="Ask your question here...")
187
  query_button = gr.Button("Submit Query")
188
 
189
- gr.Markdown("Results")
190
  rag_output = gr.Textbox(label="RAG Pipeline (Llama3.1) Response")
191
  gemini_output = gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response")
192
  final_output = gr.HTML(label="Final (GPT-4o) Response")
 
32
 
33
  # Function to extract text from PDF
34
  def extract_pdf(pdf_path):
35
+ try:
36
+ return extract_text(pdf_path)
37
+ except Exception as e:
38
+ print(f"Error extracting text from {pdf_path}: {str(e)}")
39
+ return ""
40
 
41
+ # ... (other functions remain unchanged)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
44
  global full_pdf_content, vector_store, rag_chain
 
57
 
58
  for regulation in selected_regulations:
59
  if regulation in regulation_pdfs:
60
+ pdf_path = regulation_pdfs[regulation]
61
+ if os.path.exists(pdf_path):
62
+ pdf_content = extract_pdf(pdf_path)
63
+ if pdf_content:
64
+ full_pdf_content += pdf_content + "\n\n"
65
+ documents.extend(split_text(pdf_content))
66
+ print(f"Loaded {regulation} PDF")
67
+ else:
68
+ print(f"Failed to extract content from {regulation} PDF")
69
+ else:
70
+ print(f"PDF file for {regulation} not found at {pdf_path}")
71
 
72
  # Load additional user-uploaded PDFs
73
  if additional_pdfs is not None:
74
  for pdf_file in additional_pdfs:
75
  pdf_content = extract_pdf(pdf_file.name)
76
+ if pdf_content:
77
+ full_pdf_content += pdf_content + "\n\n"
78
+ documents.extend(split_text(pdf_content))
79
+ print(f"Loaded additional PDF: {pdf_file.name}")
80
+ else:
81
+ print(f"Failed to extract content from uploaded PDF: {pdf_file.name}")
82
 
83
  if not documents:
84
+ return "No PDFs were successfully loaded. Please check your selections and uploads."
 
 
 
85
 
86
+ print(f"Total documents loaded: {len(documents)}")
87
+ print(f"Total content length: {len(full_pdf_content)} characters")
88
 
89
  vector_store = generate_embeddings(documents)
90
  rag_chain = create_rag_chain(vector_store)
91
 
92
+ return f"PDFs loaded and RAG system updated successfully! Loaded {len(documents)} document chunks."
93
 
94
  def process_query(user_query):
95
  global rag_chain, full_pdf_content
 
127
  ferpa_checkbox = gr.Checkbox(label="FERPA (US)")
128
  coppa_checkbox = gr.Checkbox(label="COPPA (US <13)")
129
 
130
+ gr.Markdown("**Optional: upload additional PDFs if needed (national regulation, school policy)**")
131
  additional_pdfs = gr.File(
132
  file_count="multiple",
133
  label="Upload additional PDFs",
 
138
  load_button = gr.Button("Load PDFs")
139
  load_output = gr.Textbox(label="Load Status")
140
 
141
+ gr.Markdown("**Ask your data protection related question**")
142
  query_input = gr.Textbox(label="Your Question", placeholder="Ask your question here...")
143
  query_button = gr.Button("Submit Query")
144
 
145
+ gr.Markdown("**Results**")
146
  rag_output = gr.Textbox(label="RAG Pipeline (Llama3.1) Response")
147
  gemini_output = gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response")
148
  final_output = gr.HTML(label="Final (GPT-4o) Response")