Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
Based on https://github.com/facebookresearch/TimeSformer | |
""" | |
# Copyright 2020 Ross Wightman | |
# Conv2d w/ Same Padding | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from typing import Tuple, Optional | |
import math | |
from typing import List, Tuple | |
from .vit_utils import is_static_pad, get_padding | |
# Dynamically pad input x with 'SAME' padding for conv with specified args | |
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0): | |
ih, iw = x.size()[-2:] | |
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding( | |
iw, k[1], s[1], d[1] | |
) | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad( | |
x, | |
[pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], | |
value=value, | |
) | |
return x | |
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution | |
def get_same_padding(x: int, k: int, s: int, d: int): | |
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0) | |
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: | |
dynamic = False | |
if isinstance(padding, str): | |
# for any string padding, the padding will be calculated for you, one of three ways | |
padding = padding.lower() | |
if padding == "same": | |
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact | |
if is_static_pad(kernel_size, **kwargs): | |
# static case, no extra overhead | |
padding = get_padding(kernel_size, **kwargs) | |
else: | |
# dynamic 'SAME' padding, has runtime/GPU memory overhead | |
padding = 0 | |
dynamic = True | |
elif padding == "valid": | |
# 'VALID' padding, same as padding=0 | |
padding = 0 | |
else: | |
# Default to PyTorch style 'same'-ish symmetric padding | |
padding = get_padding(kernel_size, **kwargs) | |
return padding, dynamic | |
def conv2d_same( | |
x, | |
weight: torch.Tensor, | |
bias: Optional[torch.Tensor] = None, | |
stride: Tuple[int, int] = (1, 1), | |
padding: Tuple[int, int] = (0, 0), | |
dilation: Tuple[int, int] = (1, 1), | |
groups: int = 1, | |
): | |
x = pad_same(x, weight.shape[-2:], stride, dilation) | |
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) | |
class Conv2dSame(nn.Conv2d): | |
"""Tensorflow like 'SAME' convolution wrapper for 2D convolutions""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=True, | |
): | |
super(Conv2dSame, self).__init__( | |
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias | |
) | |
def forward(self, x): | |
return conv2d_same( | |
x, | |
self.weight, | |
self.bias, | |
self.stride, | |
self.padding, | |
self.dilation, | |
self.groups, | |
) | |
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): | |
padding = kwargs.pop("padding", "") | |
kwargs.setdefault("bias", False) | |
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) | |
if is_dynamic: | |
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) | |
else: | |
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs) | |