John6666's picture
Upload 351 files
e84842d verified
raw
history blame
3.62 kB
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on https://github.com/facebookresearch/TimeSformer
"""
# Copyright 2020 Ross Wightman
# Conv2d w/ Same Padding
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Optional
import math
from typing import List, Tuple
from .vit_utils import is_static_pad, get_padding
# Dynamically pad input x with 'SAME' padding for conv with specified args
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(
iw, k[1], s[1], d[1]
)
if pad_h > 0 or pad_w > 0:
x = F.pad(
x,
[pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2],
value=value,
)
return x
# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
dynamic = False
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == "same":
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if is_static_pad(kernel_size, **kwargs):
# static case, no extra overhead
padding = get_padding(kernel_size, **kwargs)
else:
# dynamic 'SAME' padding, has runtime/GPU memory overhead
padding = 0
dynamic = True
elif padding == "valid":
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = get_padding(kernel_size, **kwargs)
return padding, dynamic
def conv2d_same(
x,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None,
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
):
x = pad_same(x, weight.shape[-2:], stride, dilation)
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
class Conv2dSame(nn.Conv2d):
"""Tensorflow like 'SAME' convolution wrapper for 2D convolutions"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
):
super(Conv2dSame, self).__init__(
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias
)
def forward(self, x):
return conv2d_same(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
padding = kwargs.pop("padding", "")
kwargs.setdefault("bias", False)
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
if is_dynamic:
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
else:
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)