File size: 3,621 Bytes
e84842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

 Based on https://github.com/facebookresearch/TimeSformer
"""

# Copyright 2020 Ross Wightman
# Conv2d w/ Same Padding

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Optional

import math
from typing import List, Tuple

from .vit_utils import is_static_pad, get_padding

# Dynamically pad input x with 'SAME' padding for conv with specified args
def pad_same(x, k: List[int], s: List[int], d: List[int] = (1, 1), value: float = 0):
    ih, iw = x.size()[-2:]
    pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(
        iw, k[1], s[1], d[1]
    )
    if pad_h > 0 or pad_w > 0:
        x = F.pad(
            x,
            [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2],
            value=value,
        )
    return x


# Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
def get_same_padding(x: int, k: int, s: int, d: int):
    return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)


def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]:
    dynamic = False
    if isinstance(padding, str):
        # for any string padding, the padding will be calculated for you, one of three ways
        padding = padding.lower()
        if padding == "same":
            # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
            if is_static_pad(kernel_size, **kwargs):
                # static case, no extra overhead
                padding = get_padding(kernel_size, **kwargs)
            else:
                # dynamic 'SAME' padding, has runtime/GPU memory overhead
                padding = 0
                dynamic = True
        elif padding == "valid":
            # 'VALID' padding, same as padding=0
            padding = 0
        else:
            # Default to PyTorch style 'same'-ish symmetric padding
            padding = get_padding(kernel_size, **kwargs)
    return padding, dynamic


def conv2d_same(
    x,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    stride: Tuple[int, int] = (1, 1),
    padding: Tuple[int, int] = (0, 0),
    dilation: Tuple[int, int] = (1, 1),
    groups: int = 1,
):
    x = pad_same(x, weight.shape[-2:], stride, dilation)
    return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)


class Conv2dSame(nn.Conv2d):
    """Tensorflow like 'SAME' convolution wrapper for 2D convolutions"""

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
    ):
        super(Conv2dSame, self).__init__(
            in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias
        )

    def forward(self, x):
        return conv2d_same(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
            self.groups,
        )


def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
    padding = kwargs.pop("padding", "")
    kwargs.setdefault("bias", False)
    padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
    if is_dynamic:
        return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
    else:
        return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)