Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
Based on https://github.com/mlfoundations/open_clip | |
""" | |
""" CLIP Model | |
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
""" | |
import datetime | |
import json | |
import logging | |
import os | |
import re | |
import time | |
import warnings | |
from collections import OrderedDict | |
from copy import deepcopy | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Callable, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from lavis.common.registry import registry | |
from lavis.common.utils import get_abs_path | |
from lavis.models.base_model import BaseModel | |
from lavis.models.clip_models.clip_outputs import ClipOutput, ClipOutputFeatures | |
from lavis.models.clip_models.timm_model import TimmModel | |
from lavis.models.clip_models.transform import image_transform | |
from lavis.models.clip_models.utils import freeze_batch_norm_2d | |
from lavis.tasks.multimodal_classification import MultimodalClassificationTask | |
from torch import nn | |
from .pretrained import ( | |
download_pretrained, | |
get_pretrained_url, | |
list_pretrained_tag_models, | |
) | |
_MODEL_CONFIG_PATHS = [Path(__file__).parent.parent.parent / f"configs/models/clip/"] | |
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1): | |
super().__init__() | |
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = None | |
self.stride = stride | |
if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
self.downsample = nn.Sequential( | |
OrderedDict( | |
[ | |
("-1", nn.AvgPool2d(stride)), | |
( | |
"0", | |
nn.Conv2d( | |
inplanes, | |
planes * self.expansion, | |
1, | |
stride=1, | |
bias=False, | |
), | |
), | |
("1", nn.BatchNorm2d(planes * self.expansion)), | |
] | |
) | |
) | |
def forward(self, x: torch.Tensor): | |
identity = x | |
out = self.relu(self.bn1(self.conv1(x))) | |
out = self.relu(self.bn2(self.conv2(out))) | |
out = self.avgpool(out) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class AttentionPool2d(nn.Module): | |
def __init__( | |
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None | |
): | |
super().__init__() | |
self.positional_embedding = nn.Parameter( | |
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5 | |
) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
def forward(self, x): | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute( | |
2, 0, 1 | |
) # NCHW -> (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
x, _ = F.multi_head_attention_forward( | |
query=x, | |
key=x, | |
value=x, | |
embed_dim_to_check=x.shape[-1], | |
num_heads=self.num_heads, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
in_proj_weight=None, | |
in_proj_bias=torch.cat( | |
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] | |
), | |
bias_k=None, | |
bias_v=None, | |
add_zero_attn=False, | |
dropout_p=0, | |
out_proj_weight=self.c_proj.weight, | |
out_proj_bias=self.c_proj.bias, | |
use_separate_proj_weight=True, | |
training=self.training, | |
need_weights=False, | |
) | |
return x[0] | |
class ModifiedResNet(nn.Module): | |
""" | |
A ResNet class that is similar to torchvision's but contains the following changes: | |
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |
- The final pooling layer is a QKV attention instead of an average pool | |
""" | |
def __init__(self, layers, output_dim, heads, image_size=224, width=64): | |
super().__init__() | |
self.output_dim = output_dim | |
self.image_size = image_size | |
# the 3-layer stem | |
self.conv1 = nn.Conv2d( | |
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False | |
) | |
self.bn1 = nn.BatchNorm2d(width // 2) | |
self.conv2 = nn.Conv2d( | |
width // 2, width // 2, kernel_size=3, padding=1, bias=False | |
) | |
self.bn2 = nn.BatchNorm2d(width // 2) | |
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(width) | |
self.avgpool = nn.AvgPool2d(2) | |
self.relu = nn.ReLU(inplace=True) | |
# residual layers | |
self._inplanes = width # this is a *mutable* variable used during construction | |
self.layer1 = self._make_layer(width, layers[0]) | |
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |
embed_dim = width * 32 # the ResNet feature dimension | |
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) | |
self.init_parameters() | |
def _make_layer(self, planes, blocks, stride=1): | |
layers = [Bottleneck(self._inplanes, planes, stride)] | |
self._inplanes = planes * Bottleneck.expansion | |
for _ in range(1, blocks): | |
layers.append(Bottleneck(self._inplanes, planes)) | |
return nn.Sequential(*layers) | |
def init_parameters(self): | |
if self.attnpool is not None: | |
std = self.attnpool.c_proj.in_features**-0.5 | |
nn.init.normal_(self.attnpool.q_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.k_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.v_proj.weight, std=std) | |
nn.init.normal_(self.attnpool.c_proj.weight, std=std) | |
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: | |
for name, param in resnet_block.named_parameters(): | |
if name.endswith("bn3.weight"): | |
nn.init.zeros_(param) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert ( | |
unlocked_groups == 0 | |
), "partial locking not currently supported for this model" | |
for param in self.parameters(): | |
param.requires_grad = False | |
if freeze_bn_stats: | |
freeze_batch_norm_2d(self) | |
def stem(self, x): | |
for conv, bn in [ | |
(self.conv1, self.bn1), | |
(self.conv2, self.bn2), | |
(self.conv3, self.bn3), | |
]: | |
x = self.relu(bn(conv(x))) | |
x = self.avgpool(x) | |
return x | |
def forward(self, x): | |
x = self.stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.attnpool(x) | |
return x | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
return x.to(orig_type) | |
class QuickGELU(nn.Module): | |
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", act_layer()), | |
("c_proj", nn.Linear(d_model * 4, d_model)), | |
] | |
) | |
) | |
self.ln_2 = LayerNorm(d_model) | |
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU | |
): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.ModuleList( | |
[ | |
ResidualAttentionBlock(width, heads, act_layer=act_layer) | |
for _ in range(layers) | |
] | |
) | |
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): | |
for r in self.resblocks: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
class VisualTransformer(nn.Module): | |
def __init__( | |
self, | |
image_size: int, | |
patch_size: int, | |
width: int, | |
layers: int, | |
heads: int, | |
output_dim: int, | |
act_layer: Callable = nn.GELU, | |
): | |
super().__init__() | |
self.image_size = image_size | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d( | |
in_channels=3, | |
out_channels=width, | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=False, | |
) | |
scale = width**-0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter( | |
scale * torch.randn((image_size // patch_size) ** 2 + 1, width) | |
) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads, act_layer=act_layer) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert ( | |
unlocked_groups == 0 | |
), "partial locking not currently supported for this model" | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, x: torch.Tensor): | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat( | |
[ | |
self.class_embedding.to(x.dtype) | |
+ torch.zeros( | |
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device | |
), | |
x, | |
], | |
dim=1, | |
) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_post(x[:, 0, :]) | |
if self.proj is not None: | |
x = x @ self.proj | |
return x | |
class CLIPVisionCfg: | |
layers: Union[Tuple[int, int, int, int], int] = 12 | |
width: int = 768 | |
patch_size: int = 16 | |
image_size: Union[Tuple[int, int], int] = 224 | |
timm_model_name: str = ( | |
None # a valid model name overrides layers, width, patch_size | |
) | |
timm_model_pretrained: bool = ( | |
False # use (imagenet) pretrained weights for named model | |
) | |
timm_pool: str = ( | |
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
) | |
timm_proj: str = ( | |
"linear" # linear projection for timm model output ('linear', 'mlp', '') | |
) | |
class CLIPTextCfg: | |
context_length: int | |
vocab_size: int | |
width: int | |
heads: int | |
layers: int | |
class CLIP(BaseModel): | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"ViT-B-32": "configs/models/clip_vit_base32.yaml", | |
"ViT-B-16": "configs/models/clip_vit_base16.yaml", | |
"ViT-L-14": "configs/models/clip_vit_large14.yaml", | |
"ViT-L-14-336": "configs/models/clip_vit_large14_336.yaml", | |
"RN50": "configs/models/clip_resnet50.yaml", | |
} | |
def __init__( | |
self, | |
embed_dim: int, | |
vision_cfg: CLIPVisionCfg, | |
text_cfg: CLIPTextCfg, | |
quick_gelu: bool = False, | |
): | |
from .tokenizer import tokenize | |
super().__init__() | |
self.tokenizer = tokenize | |
self._loss = None | |
if isinstance(vision_cfg, dict): | |
vision_cfg = CLIPVisionCfg(**vision_cfg) | |
if isinstance(text_cfg, dict): | |
text_cfg = CLIPTextCfg(**text_cfg) | |
self.context_length = text_cfg.context_length | |
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more | |
# memory efficient in recent PyTorch releases (>= 1.10). | |
# NOTE: timm models always use native GELU regardless of quick_gelu flag. | |
act_layer = QuickGELU if quick_gelu else nn.GELU | |
if vision_cfg.timm_model_name: | |
self.visual = TimmModel( | |
vision_cfg.timm_model_name, | |
pretrained=vision_cfg.timm_model_pretrained, | |
pool=vision_cfg.timm_pool, | |
proj=vision_cfg.timm_proj, | |
embed_dim=embed_dim, | |
image_size=vision_cfg.image_size, | |
) | |
act_layer = ( | |
nn.GELU | |
) # so that text transformer doesn't use QuickGELU w/ timm models | |
elif isinstance(vision_cfg.layers, (tuple, list)): | |
vision_heads = vision_cfg.width * 32 // 64 | |
self.visual = ModifiedResNet( | |
layers=vision_cfg.layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
image_size=vision_cfg.image_size, | |
width=vision_cfg.width, | |
) | |
else: | |
vision_heads = vision_cfg.width // 64 | |
self.visual = VisualTransformer( | |
image_size=vision_cfg.image_size, | |
patch_size=vision_cfg.patch_size, | |
width=vision_cfg.width, | |
layers=vision_cfg.layers, | |
heads=vision_heads, | |
output_dim=embed_dim, | |
act_layer=act_layer, | |
) | |
self.transformer = Transformer( | |
width=text_cfg.width, | |
layers=text_cfg.layers, | |
heads=text_cfg.heads, | |
act_layer=act_layer, | |
) | |
self.vocab_size = text_cfg.vocab_size | |
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width) | |
self.positional_embedding = nn.Parameter( | |
torch.empty(self.context_length, text_cfg.width) | |
) | |
self.ln_final = LayerNorm(text_cfg.width) | |
self.text_projection = nn.Parameter(torch.empty(text_cfg.width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) | |
self.prompt_templates = openai_imagenet_template | |
self.classifier = None | |
self.init_parameters() | |
def loss(self): | |
if self._loss is None: | |
from lavis.models.clip_models.loss import ClipLoss | |
from torch import distributed as dist | |
self._loss = ClipLoss( | |
world_size=dist.get_world_size(), | |
rank=dist.get_rank(), | |
local_loss=False, | |
gather_with_grad=False, | |
use_horovod=False, | |
) | |
return self._loss | |
def init_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
nn.init.constant_(self.logit_scale, np.log(1 / 0.07)) | |
if hasattr(self.visual, "init_parameters"): | |
self.visual.init_parameters() | |
proj_std = (self.transformer.width**-0.5) * ( | |
(2 * self.transformer.layers) ** -0.5 | |
) | |
attn_std = self.transformer.width**-0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5) | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): | |
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991 | |
self.visual.lock( | |
unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats | |
) | |
def encode_image(self, image): | |
return self.visual(image) | |
def encode_text(self, text): | |
x = self.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x, attn_mask=self.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |
# def forward(self, image, text): | |
def forward(self, samples): | |
image = samples.get("image") | |
text = samples.get("text_input") | |
if text is not None: | |
text = self.tokenizer(text).to(self.device) | |
if image is None: | |
return self.encode_text(text) | |
elif text is None: | |
return self.encode_image(image) | |
image_embeds = self.encode_image(image) | |
image_features = F.normalize(image_embeds, dim=-1) | |
text_embeds = self.encode_text(text) | |
text_features = F.normalize(text_embeds, dim=-1) | |
loss = self.loss(image_features, text_features, self.logit_scale.exp()) | |
# return image_features, text_features, self.logit_scale.exp() | |
# return {"loss": loss} | |
return ClipOutput( | |
intermediate_output=ClipOutputFeatures( | |
image_embeds=image_embeds, | |
image_embeds_proj=image_features, | |
text_embeds=text_embeds, | |
text_embeds_proj=text_features, | |
), | |
loss=loss, | |
logit_scale_exp=self.logit_scale.exp(), | |
) | |
def extract_features(self, samples): | |
""" | |
Extract features from the model for samples. | |
Keys allowed are "image" and "text_input" in samples. | |
If either key is missing, the corresponding features are not extracted. | |
Args: | |
samples: dict of samples to extract features from. | |
Returns: | |
ClipOutputFeatures object with features for the samples. | |
""" | |
image = samples.get("image") | |
text = samples.get("text_input") | |
if text is not None: | |
text = self.tokenizer(text).to(self.device) | |
if image is None: | |
return self.encode_text(text) | |
elif text is None: | |
return self.encode_image(image) | |
image_embeds = self.encode_image(image) | |
image_features = F.normalize(image_embeds, dim=-1) | |
text_embeds = self.encode_text(text) | |
text_features = F.normalize(text_embeds, dim=-1) | |
return ClipOutputFeatures( | |
image_embeds=image_embeds, | |
image_embeds_proj=image_features, | |
text_embeds=text_embeds, | |
text_embeds_proj=text_features, | |
) | |
def predict(self, samples): | |
image = samples["image"] | |
targets = samples["label"] | |
image_features = self.encode_image(image) | |
image_features = F.normalize(image_features, dim=-1) | |
logits = 100.0 * image_features @ self.classifier | |
return {"predictions": logits, "targets": targets} | |
def before_evaluation(self, dataset, task_type, **kwargs): | |
if task_type == MultimodalClassificationTask: | |
self.classifier = self.zero_shot_classifier( | |
classnames=dataset.classnames, | |
templates=self.prompt_templates, | |
) | |
def zero_shot_classifier(self, classnames, templates): | |
with torch.no_grad(): | |
zeroshot_weights = [] | |
for classname in classnames: | |
texts = [ | |
template(classname) for template in templates | |
] # format with class | |
texts = self.tokenizer(texts).to(self.device) # tokenize | |
class_embeddings = self.encode_text(texts) | |
class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0) | |
class_embedding /= class_embedding.norm() | |
zeroshot_weights.append(class_embedding) | |
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(self.device) | |
return zeroshot_weights | |
def default_config_path(cls, model_type="base"): | |
model_type = "ViT-B-32" if model_type == "base" else model_type | |
assert ( | |
model_type in cls.PRETRAINED_MODEL_CONFIG_DICT | |
), "Unknown model type {}. \n Available types: {}".format( | |
model_type, cls.PRETRAINED_MODEL_CONFIG_DICT.keys() | |
) | |
return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) | |
def from_config(cls, cfg=None): | |
model_name = cfg.model_type | |
pretrained = cfg.pretrained | |
precision = cfg.get("precision", "fp32") | |
return create_model( | |
model_name=model_name, pretrained=pretrained, precision=precision | |
) | |
def zero_shot_predict(self, image_path, categories): | |
assert isinstance( | |
categories, list | |
), f"categories must be a list, got {type(categories)}." | |
assert os.path.exists(image_path), f"File {image_path} does not exist." | |
from lavis.processors.clip_processors import ClipImageEvalProcessor | |
from PIL import Image | |
image_preprocess = ClipImageEvalProcessor() | |
image = image_preprocess(Image.open(image_path)).unsqueeze(0) | |
text = self.tokenizer(categories) | |
with torch.no_grad(): | |
image_features = self.encode_image(image) | |
text_features = self.encode_text(text) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
print("Label probs:", text_probs) # prints: [[1., 0., 0.]] | |
def compute_sim_matrix(self, data_loader, **kwargs): | |
logging.info("Computing features for evaluation...") | |
start_time = time.time() | |
texts = data_loader.dataset.text | |
num_text = len(texts) | |
text_bs = 256 | |
text_features = [] | |
for i in range(0, num_text, text_bs): | |
text = texts[i : min(num_text, i + text_bs)] | |
text_input = self.tokenizer(text).to(self.device) | |
text_feat = self.encode_text(text_input) | |
text_feat = F.normalize(text_feat, dim=-1) | |
text_features.append(text_feat) | |
text_features = torch.cat(text_features, dim=0) | |
image_features = [] | |
for samples in data_loader: | |
image = samples["image"] | |
image = image.to(self.device) | |
image_feat = self.encode_image(image) | |
image_feat = F.normalize(image_feat, dim=-1) | |
image_features.append(image_feat) | |
image_features = torch.cat(image_features, dim=0) | |
sims_matrix_i2t = image_features @ text_features.t() | |
sims_matrix_t2i = sims_matrix_i2t.t() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logging.info("Evaluation time {}".format(total_time_str)) | |
return sims_matrix_i2t.cpu().numpy(), sims_matrix_t2i.cpu().numpy() | |
def convert_weights_to_fp16(model: nn.Module): | |
"""Convert applicable model parameters to fp16""" | |
def _convert_weights_to_fp16(l): | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
if isinstance(l, nn.MultiheadAttention): | |
for attr in [ | |
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], | |
"in_proj_bias", | |
"bias_k", | |
"bias_v", | |
]: | |
tensor = getattr(l, attr) | |
if tensor is not None: | |
tensor.data = tensor.data.half() | |
for name in ["text_projection", "proj"]: | |
if hasattr(l, name): | |
attr = getattr(l, name) | |
if attr is not None: | |
attr.data = attr.data.half() | |
model.apply(_convert_weights_to_fp16) | |
def build_model_from_openai_state_dict(state_dict: dict): | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len( | |
[ | |
k | |
for k in state_dict.keys() | |
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") | |
] | |
) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round( | |
(state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5 | |
) | |
image_size = vision_patch_size * grid_size | |
else: | |
counts: list = [ | |
len( | |
set( | |
k.split(".")[2] | |
for k in state_dict | |
if k.startswith(f"visual.layer{b}") | |
) | |
) | |
for b in [1, 2, 3, 4] | |
] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round( | |
(state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5 | |
) | |
vision_patch_size = None | |
assert ( | |
output_width**2 + 1 | |
== state_dict["visual.attnpool.positional_embedding"].shape[0] | |
) | |
image_size = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len( | |
set( | |
k.split(".")[2] | |
for k in state_dict | |
if k.startswith(f"transformer.resblocks") | |
) | |
) | |
vision_cfg = CLIPVisionCfg( | |
layers=vision_layers, | |
width=vision_width, | |
patch_size=vision_patch_size, | |
image_size=image_size, | |
) | |
text_cfg = CLIPTextCfg( | |
context_length=context_length, | |
vocab_size=vocab_size, | |
width=transformer_width, | |
heads=transformer_heads, | |
layers=transformer_layers, | |
) | |
model = CLIP( | |
embed_dim, | |
vision_cfg=vision_cfg, | |
text_cfg=text_cfg, | |
quick_gelu=True, # OpenAI models were trained with QuickGELU | |
) | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
state_dict.pop(key, None) | |
convert_weights_to_fp16(model) | |
model.load_state_dict(state_dict) | |
return model.eval() | |
def trace_model(model, batch_size=256, device=torch.device("cpu")): | |
model.eval() | |
image_size = model.visual.image_size | |
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) | |
example_text = torch.zeros( | |
(batch_size, model.context_length), dtype=torch.int, device=device | |
) | |
model = torch.jit.trace_module( | |
model, | |
inputs=dict( | |
forward=(example_images, example_text), | |
encode_text=(example_text,), | |
encode_image=(example_images,), | |
), | |
) | |
model.visual.image_size = image_size | |
return | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] | |
def _rescan_model_configs(): | |
global _MODEL_CONFIGS | |
config_ext = (".json",) | |
config_files = [] | |
for config_path in _MODEL_CONFIG_PATHS: | |
if config_path.is_file() and config_path.suffix in config_ext: | |
config_files.append(config_path) | |
elif config_path.is_dir(): | |
for ext in config_ext: | |
config_files.extend(config_path.glob(f"*{ext}")) | |
for cf in config_files: | |
with open(cf, "r") as f: | |
model_cfg = json.load(f) | |
if all(a in model_cfg for a in ("embed_dim", "vision_cfg", "text_cfg")): | |
_MODEL_CONFIGS[cf.stem] = model_cfg | |
_MODEL_CONFIGS = { | |
k: v | |
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])) | |
} | |
_rescan_model_configs() # initial populate of model config registry | |
def load_state_dict(checkpoint_path: str, map_location="cpu"): | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
if isinstance(checkpoint, dict) and "state_dict" in checkpoint: | |
state_dict = checkpoint["state_dict"] | |
else: | |
state_dict = checkpoint | |
if next(iter(state_dict.items()))[0].startswith("module"): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
return state_dict | |
def create_model( | |
model_name: str, | |
pretrained: str = "", | |
precision: str = "fp32", | |
device: torch.device = torch.device("cpu"), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
pretrained_image: bool = False, | |
): | |
model_name = model_name.replace( | |
"/", "-" | |
) # for callers using old naming with / in ViT names | |
if pretrained.lower() == "openai": | |
logging.info(f"Loading pretrained {model_name} from OpenAI.") | |
model = load_openai_model(model_name, device=device, jit=jit) | |
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 | |
if precision == "amp" or precision == "fp32": | |
model = model.float() | |
else: | |
logging.info(f"No pretrained weights loaded for {model_name} model.") | |
if model_name in _MODEL_CONFIGS: | |
logging.info(f"Loading {model_name} model config.") | |
model_cfg = deepcopy(_MODEL_CONFIGS[model_name]) | |
else: | |
logging.error( | |
f"Model config for {model_name} not found; available models {list_models()}." | |
) | |
raise RuntimeError(f"Model config for {model_name} not found.") | |
if force_quick_gelu: | |
# override for use of QuickGELU on non-OpenAI transformer models | |
model_cfg["quick_gelu"] = True | |
if pretrained_image: | |
if "timm_model_name" in model_cfg.get("vision_cfg", {}): | |
# pretrained weight loading for timm models set via vision_cfg | |
model_cfg["vision_cfg"]["timm_model_pretrained"] = True | |
else: | |
assert ( | |
False | |
), "pretrained image towers currently only supported for timm models" | |
model = CLIP(**model_cfg) | |
if pretrained: | |
checkpoint_path = "" | |
url = get_pretrained_url(model_name, pretrained) | |
if url: | |
checkpoint_path = download_pretrained(url) | |
elif os.path.exists(pretrained): | |
checkpoint_path = pretrained | |
if checkpoint_path: | |
logging.info(f"Loading pretrained {model_name} weights ({pretrained}).") | |
model.load_state_dict(load_state_dict(checkpoint_path)) | |
else: | |
logging.warning( | |
f"Pretrained weights ({pretrained}) not found for model {model_name}." | |
) | |
raise RuntimeError( | |
f"Pretrained weights ({pretrained}) not found for model {model_name}." | |
) | |
model.to(device=device) | |
if precision == "fp16": | |
assert device.type != "cpu" | |
convert_weights_to_fp16(model) | |
if jit: | |
model = torch.jit.script(model) | |
return model | |
def create_model_and_transforms( | |
model_name: str, | |
pretrained: str = "", | |
precision: str = "fp32", | |
device: torch.device = torch.device("cpu"), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
pretrained_image: bool = False, | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision, | |
device, | |
jit, | |
force_quick_gelu=force_quick_gelu, | |
pretrained_image=pretrained_image, | |
) | |
preprocess_train = image_transform(model.visual.image_size, is_train=True) | |
preprocess_val = image_transform(model.visual.image_size, is_train=False) | |
return model, preprocess_train, preprocess_val | |
def list_models(): | |
"""enumerate available model architectures based on config files""" | |
return list(_MODEL_CONFIGS.keys()) | |
def add_model_config(path): | |
"""add model config path or file and update registry""" | |
if not isinstance(path, Path): | |
path = Path(path) | |
_MODEL_CONFIG_PATHS.append(path) | |
_rescan_model_configs() | |
def list_openai_models() -> List[str]: | |
"""Returns the names of available CLIP models""" | |
return list_pretrained_tag_models("openai") | |
def load_openai_model( | |
name: str, | |
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", | |
jit=True, | |
): | |
"""Load a CLIP model | |
Parameters | |
---------- | |
name : str | |
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict | |
device : Union[str, torch.device] | |
The device to put the loaded model | |
jit : bool | |
Whether to load the optimized JIT model (default) or more hackable non-JIT model. | |
Returns | |
------- | |
model : torch.nn.Module | |
The CLIP model | |
preprocess : Callable[[PIL.Image], torch.Tensor] | |
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input | |
""" | |
if get_pretrained_url(name, "openai"): | |
model_path = download_pretrained(get_pretrained_url(name, "openai")) | |
elif os.path.isfile(name): | |
model_path = name | |
else: | |
raise RuntimeError( | |
f"Model {name} not found; available models = {list_openai_models()}" | |
) | |
try: | |
# loading JIT archive | |
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() | |
state_dict = None | |
except RuntimeError: | |
# loading saved state dict | |
if jit: | |
warnings.warn( | |
f"File {model_path} is not a JIT archive. Loading as a state dict instead" | |
) | |
jit = False | |
state_dict = torch.load(model_path, map_location="cpu") | |
if not jit: | |
try: | |
model = build_model_from_openai_state_dict( | |
state_dict or model.state_dict() | |
).to(device) | |
except KeyError: | |
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} | |
model = build_model_from_openai_state_dict(sd).to(device) | |
if str(device) == "cpu": | |
model.float() | |
return model | |
# patch the device names | |
device_holder = torch.jit.trace( | |
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[] | |
) | |
device_node = [ | |
n | |
for n in device_holder.graph.findAllNodes("prim::Constant") | |
if "Device" in repr(n) | |
][-1] | |
def patch_device(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("prim::Constant"): | |
if "value" in node.attributeNames() and str(node["value"]).startswith( | |
"cuda" | |
): | |
node.copyAttributes(device_node) | |
model.apply(patch_device) | |
patch_device(model.encode_image) | |
patch_device(model.encode_text) | |
# patch dtype to float32 on CPU | |
if str(device) == "cpu": | |
float_holder = torch.jit.trace( | |
lambda: torch.ones([]).float(), example_inputs=[] | |
) | |
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] | |
float_node = float_input.node() | |
def patch_float(module): | |
try: | |
graphs = [module.graph] if hasattr(module, "graph") else [] | |
except RuntimeError: | |
graphs = [] | |
if hasattr(module, "forward1"): | |
graphs.append(module.forward1.graph) | |
for graph in graphs: | |
for node in graph.findAllNodes("aten::to"): | |
inputs = list(node.inputs()) | |
for i in [ | |
1, | |
2, | |
]: # dtype can be the second or third argument to aten::to() | |
if inputs[i].node()["value"] == 5: | |
inputs[i].node().copyAttributes(float_node) | |
model.apply(patch_float) | |
patch_float(model.encode_image) | |
patch_float(model.encode_text) | |
model.float() | |
# ensure image_size attr available at consistent location for both jit and non-jit | |
model.visual.image_size = model.input_resolution.item() | |
return model | |
openai_imagenet_template = [ | |
lambda c: f"a bad photo of a {c}.", | |
lambda c: f"a photo of many {c}.", | |
lambda c: f"a sculpture of a {c}.", | |
lambda c: f"a photo of the hard to see {c}.", | |
lambda c: f"a low resolution photo of the {c}.", | |
lambda c: f"a rendering of a {c}.", | |
lambda c: f"graffiti of a {c}.", | |
lambda c: f"a bad photo of the {c}.", | |
lambda c: f"a cropped photo of the {c}.", | |
lambda c: f"a tattoo of a {c}.", | |
lambda c: f"the embroidered {c}.", | |
lambda c: f"a photo of a hard to see {c}.", | |
lambda c: f"a bright photo of a {c}.", | |
lambda c: f"a photo of a clean {c}.", | |
lambda c: f"a photo of a dirty {c}.", | |
lambda c: f"a dark photo of the {c}.", | |
lambda c: f"a drawing of a {c}.", | |
lambda c: f"a photo of my {c}.", | |
lambda c: f"the plastic {c}.", | |
lambda c: f"a photo of the cool {c}.", | |
lambda c: f"a close-up photo of a {c}.", | |
lambda c: f"a black and white photo of the {c}.", | |
lambda c: f"a painting of the {c}.", | |
lambda c: f"a painting of a {c}.", | |
lambda c: f"a pixelated photo of the {c}.", | |
lambda c: f"a sculpture of the {c}.", | |
lambda c: f"a bright photo of the {c}.", | |
lambda c: f"a cropped photo of a {c}.", | |
lambda c: f"a plastic {c}.", | |
lambda c: f"a photo of the dirty {c}.", | |
lambda c: f"a jpeg corrupted photo of a {c}.", | |
lambda c: f"a blurry photo of the {c}.", | |
lambda c: f"a photo of the {c}.", | |
lambda c: f"a good photo of the {c}.", | |
lambda c: f"a rendering of the {c}.", | |
lambda c: f"a {c} in a video game.", | |
lambda c: f"a photo of one {c}.", | |
lambda c: f"a doodle of a {c}.", | |
lambda c: f"a close-up photo of the {c}.", | |
lambda c: f"a photo of a {c}.", | |
lambda c: f"the origami {c}.", | |
lambda c: f"the {c} in a video game.", | |
lambda c: f"a sketch of a {c}.", | |
lambda c: f"a doodle of the {c}.", | |
lambda c: f"a origami {c}.", | |
lambda c: f"a low resolution photo of a {c}.", | |
lambda c: f"the toy {c}.", | |
lambda c: f"a rendition of the {c}.", | |
lambda c: f"a photo of the clean {c}.", | |
lambda c: f"a photo of a large {c}.", | |
lambda c: f"a rendition of a {c}.", | |
lambda c: f"a photo of a nice {c}.", | |
lambda c: f"a photo of a weird {c}.", | |
lambda c: f"a blurry photo of a {c}.", | |
lambda c: f"a cartoon {c}.", | |
lambda c: f"art of a {c}.", | |
lambda c: f"a sketch of the {c}.", | |
lambda c: f"a embroidered {c}.", | |
lambda c: f"a pixelated photo of a {c}.", | |
lambda c: f"itap of the {c}.", | |
lambda c: f"a jpeg corrupted photo of the {c}.", | |
lambda c: f"a good photo of a {c}.", | |
lambda c: f"a plushie {c}.", | |
lambda c: f"a photo of the nice {c}.", | |
lambda c: f"a photo of the small {c}.", | |
lambda c: f"a photo of the weird {c}.", | |
lambda c: f"the cartoon {c}.", | |
lambda c: f"art of the {c}.", | |
lambda c: f"a drawing of the {c}.", | |
lambda c: f"a photo of the large {c}.", | |
lambda c: f"a black and white photo of a {c}.", | |
lambda c: f"the plushie {c}.", | |
lambda c: f"a dark photo of a {c}.", | |
lambda c: f"itap of a {c}.", | |
lambda c: f"graffiti of the {c}.", | |
lambda c: f"a toy {c}.", | |
lambda c: f"itap of my {c}.", | |
lambda c: f"a photo of a cool {c}.", | |
lambda c: f"a photo of a small {c}.", | |
lambda c: f"a tattoo of the {c}.", | |
] | |