File size: 43,435 Bytes
e84842d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

 Based on https://github.com/mlfoundations/open_clip
"""

""" CLIP Model
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""

import datetime
import json
import logging
import os
import re
import time
import warnings
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.common.utils import get_abs_path
from lavis.models.base_model import BaseModel
from lavis.models.clip_models.clip_outputs import ClipOutput, ClipOutputFeatures
from lavis.models.clip_models.timm_model import TimmModel
from lavis.models.clip_models.transform import image_transform
from lavis.models.clip_models.utils import freeze_batch_norm_2d
from lavis.tasks.multimodal_classification import MultimodalClassificationTask
from torch import nn

from .pretrained import (
    download_pretrained,
    get_pretrained_url,
    list_pretrained_tag_models,
)

_MODEL_CONFIG_PATHS = [Path(__file__).parent.parent.parent / f"configs/models/clip/"]
_MODEL_CONFIGS = {}  # directory (model_name: config) of model architecture configs


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(
                OrderedDict(
                    [
                        ("-1", nn.AvgPool2d(stride)),
                        (
                            "0",
                            nn.Conv2d(
                                inplanes,
                                planes * self.expansion,
                                1,
                                stride=1,
                                bias=False,
                            ),
                        ),
                        ("1", nn.BatchNorm2d(planes * self.expansion)),
                    ]
                )
            )

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu(self.bn1(self.conv1(x)))
        out = self.relu(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class AttentionPool2d(nn.Module):
    def __init__(
        self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
    ):
        super().__init__()
        self.positional_embedding = nn.Parameter(
            torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
        )
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
            2, 0, 1
        )  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x,
            key=x,
            value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat(
                [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
            ),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False,
        )

        return x[0]


class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, output_dim, heads, image_size=224, width=64):
        super().__init__()
        self.output_dim = output_dim
        self.image_size = image_size

        # the 3-layer stem
        self.conv1 = nn.Conv2d(
            3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(width // 2)
        self.conv2 = nn.Conv2d(
            width // 2, width // 2, kernel_size=3, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(width // 2)
        self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(width)
        self.avgpool = nn.AvgPool2d(2)
        self.relu = nn.ReLU(inplace=True)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)

        self.init_parameters()

    def _make_layer(self, planes, blocks, stride=1):
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes))

        return nn.Sequential(*layers)

    def init_parameters(self):
        if self.attnpool is not None:
            std = self.attnpool.c_proj.in_features**-0.5
            nn.init.normal_(self.attnpool.q_proj.weight, std=std)
            nn.init.normal_(self.attnpool.k_proj.weight, std=std)
            nn.init.normal_(self.attnpool.v_proj.weight, std=std)
            nn.init.normal_(self.attnpool.c_proj.weight, std=std)

        for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
            for name, param in resnet_block.named_parameters():
                if name.endswith("bn3.weight"):
                    nn.init.zeros_(param)

    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        assert (
            unlocked_groups == 0
        ), "partial locking not currently supported for this model"
        for param in self.parameters():
            param.requires_grad = False
        if freeze_bn_stats:
            freeze_batch_norm_2d(self)

    def stem(self, x):
        for conv, bn in [
            (self.conv1, self.bn1),
            (self.conv2, self.bn2),
            (self.conv3, self.bn3),
        ]:
            x = self.relu(bn(conv(x)))
        x = self.avgpool(x)
        return x

    def forward(self, x):
        x = self.stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)

        return x


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)


class QuickGELU(nn.Module):
    # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, d_model * 4)),
                    ("gelu", act_layer()),
                    ("c_proj", nn.Linear(d_model * 4, d_model)),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)

    def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(width, heads, act_layer=act_layer)
                for _ in range(layers)
            ]
        )

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        for r in self.resblocks:
            x = r(x, attn_mask=attn_mask)
        return x


class VisualTransformer(nn.Module):
    def __init__(
        self,
        image_size: int,
        patch_size: int,
        width: int,
        layers: int,
        heads: int,
        output_dim: int,
        act_layer: Callable = nn.GELU,
    ):
        super().__init__()
        self.image_size = image_size
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(
            in_channels=3,
            out_channels=width,
            kernel_size=patch_size,
            stride=patch_size,
            bias=False,
        )

        scale = width**-0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(
            scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
        )
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads, act_layer=act_layer)

        self.ln_post = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        assert (
            unlocked_groups == 0
        ), "partial locking not currently supported for this model"
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, x: torch.Tensor):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat(
            [
                self.class_embedding.to(x.dtype)
                + torch.zeros(
                    x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
                ),
                x,
            ],
            dim=1,
        )  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        if self.proj is not None:
            x = x @ self.proj

        return x


@dataclass
class CLIPVisionCfg:
    layers: Union[Tuple[int, int, int, int], int] = 12
    width: int = 768
    patch_size: int = 16
    image_size: Union[Tuple[int, int], int] = 224
    timm_model_name: str = (
        None  # a valid model name overrides layers, width, patch_size
    )
    timm_model_pretrained: bool = (
        False  # use (imagenet) pretrained weights for named model
    )
    timm_pool: str = (
        "avg"  # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
    )
    timm_proj: str = (
        "linear"  # linear projection for timm model output ('linear', 'mlp', '')
    )


@dataclass
class CLIPTextCfg:
    context_length: int
    vocab_size: int
    width: int
    heads: int
    layers: int


@registry.register_model("clip")
@registry.register_model("clip_feature_extractor")
class CLIP(BaseModel):
    PRETRAINED_MODEL_CONFIG_DICT = {
        "ViT-B-32": "configs/models/clip_vit_base32.yaml",
        "ViT-B-16": "configs/models/clip_vit_base16.yaml",
        "ViT-L-14": "configs/models/clip_vit_large14.yaml",
        "ViT-L-14-336": "configs/models/clip_vit_large14_336.yaml",
        "RN50": "configs/models/clip_resnet50.yaml",
    }

    def __init__(
        self,
        embed_dim: int,
        vision_cfg: CLIPVisionCfg,
        text_cfg: CLIPTextCfg,
        quick_gelu: bool = False,
    ):
        from .tokenizer import tokenize

        super().__init__()

        self.tokenizer = tokenize
        self._loss = None

        if isinstance(vision_cfg, dict):
            vision_cfg = CLIPVisionCfg(**vision_cfg)
        if isinstance(text_cfg, dict):
            text_cfg = CLIPTextCfg(**text_cfg)

        self.context_length = text_cfg.context_length

        # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
        # memory efficient in recent PyTorch releases (>= 1.10).
        # NOTE: timm models always use native GELU regardless of quick_gelu flag.
        act_layer = QuickGELU if quick_gelu else nn.GELU

        if vision_cfg.timm_model_name:
            self.visual = TimmModel(
                vision_cfg.timm_model_name,
                pretrained=vision_cfg.timm_model_pretrained,
                pool=vision_cfg.timm_pool,
                proj=vision_cfg.timm_proj,
                embed_dim=embed_dim,
                image_size=vision_cfg.image_size,
            )
            act_layer = (
                nn.GELU
            )  # so that text transformer doesn't use QuickGELU w/ timm models
        elif isinstance(vision_cfg.layers, (tuple, list)):
            vision_heads = vision_cfg.width * 32 // 64
            self.visual = ModifiedResNet(
                layers=vision_cfg.layers,
                output_dim=embed_dim,
                heads=vision_heads,
                image_size=vision_cfg.image_size,
                width=vision_cfg.width,
            )
        else:
            vision_heads = vision_cfg.width // 64
            self.visual = VisualTransformer(
                image_size=vision_cfg.image_size,
                patch_size=vision_cfg.patch_size,
                width=vision_cfg.width,
                layers=vision_cfg.layers,
                heads=vision_heads,
                output_dim=embed_dim,
                act_layer=act_layer,
            )

        self.transformer = Transformer(
            width=text_cfg.width,
            layers=text_cfg.layers,
            heads=text_cfg.heads,
            act_layer=act_layer,
        )

        self.vocab_size = text_cfg.vocab_size
        self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
        self.positional_embedding = nn.Parameter(
            torch.empty(self.context_length, text_cfg.width)
        )
        self.ln_final = LayerNorm(text_cfg.width)

        self.text_projection = nn.Parameter(torch.empty(text_cfg.width, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)

        self.prompt_templates = openai_imagenet_template
        self.classifier = None

        self.init_parameters()

    @property
    def loss(self):
        if self._loss is None:
            from lavis.models.clip_models.loss import ClipLoss
            from torch import distributed as dist

            self._loss = ClipLoss(
                world_size=dist.get_world_size(),
                rank=dist.get_rank(),
                local_loss=False,
                gather_with_grad=False,
                use_horovod=False,
            )

        return self._loss

    def init_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)
        nn.init.constant_(self.logit_scale, np.log(1 / 0.07))

        if hasattr(self.visual, "init_parameters"):
            self.visual.init_parameters()

        proj_std = (self.transformer.width**-0.5) * (
            (2 * self.transformer.layers) ** -0.5
        )
        attn_std = self.transformer.width**-0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5)

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
        # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
        self.visual.lock(
            unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats
        )

    def encode_image(self, image):
        return self.visual(image)

    def encode_text(self, text):
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x, attn_mask=self.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x

    # def forward(self, image, text):
    def forward(self, samples):
        image = samples.get("image")
        text = samples.get("text_input")

        if text is not None:
            text = self.tokenizer(text).to(self.device)

        if image is None:
            return self.encode_text(text)
        elif text is None:
            return self.encode_image(image)
        image_embeds = self.encode_image(image)
        image_features = F.normalize(image_embeds, dim=-1)

        text_embeds = self.encode_text(text)
        text_features = F.normalize(text_embeds, dim=-1)

        loss = self.loss(image_features, text_features, self.logit_scale.exp())

        # return image_features, text_features, self.logit_scale.exp()
        # return {"loss": loss}
        return ClipOutput(
            intermediate_output=ClipOutputFeatures(
                image_embeds=image_embeds,
                image_embeds_proj=image_features,
                text_embeds=text_embeds,
                text_embeds_proj=text_features,
            ),
            loss=loss,
            logit_scale_exp=self.logit_scale.exp(),
        )

    def extract_features(self, samples):
        """
        Extract features from the model for samples.

        Keys allowed are "image" and "text_input" in samples.
        If either key is missing, the corresponding features are not extracted.

        Args:
            samples: dict of samples to extract features from.

        Returns:
            ClipOutputFeatures object with features for the samples.
        """
        image = samples.get("image")
        text = samples.get("text_input")

        if text is not None:
            text = self.tokenizer(text).to(self.device)

        if image is None:
            return self.encode_text(text)
        elif text is None:
            return self.encode_image(image)

        image_embeds = self.encode_image(image)
        image_features = F.normalize(image_embeds, dim=-1)

        text_embeds = self.encode_text(text)
        text_features = F.normalize(text_embeds, dim=-1)

        return ClipOutputFeatures(
            image_embeds=image_embeds,
            image_embeds_proj=image_features,
            text_embeds=text_embeds,
            text_embeds_proj=text_features,
        )

    def predict(self, samples):
        image = samples["image"]
        targets = samples["label"]

        image_features = self.encode_image(image)
        image_features = F.normalize(image_features, dim=-1)

        logits = 100.0 * image_features @ self.classifier

        return {"predictions": logits, "targets": targets}

    def before_evaluation(self, dataset, task_type, **kwargs):
        if task_type == MultimodalClassificationTask:
            self.classifier = self.zero_shot_classifier(
                classnames=dataset.classnames,
                templates=self.prompt_templates,
            )

    def zero_shot_classifier(self, classnames, templates):
        with torch.no_grad():
            zeroshot_weights = []
            for classname in classnames:
                texts = [
                    template(classname) for template in templates
                ]  # format with class
                texts = self.tokenizer(texts).to(self.device)  # tokenize

                class_embeddings = self.encode_text(texts)
                class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
                class_embedding /= class_embedding.norm()
                zeroshot_weights.append(class_embedding)
            zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(self.device)
        return zeroshot_weights

    @classmethod
    def default_config_path(cls, model_type="base"):
        model_type = "ViT-B-32" if model_type == "base" else model_type

        assert (
            model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
        ), "Unknown model type {}. \n Available types: {}".format(
            model_type, cls.PRETRAINED_MODEL_CONFIG_DICT.keys()
        )
        return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])

    @classmethod
    def from_config(cls, cfg=None):
        model_name = cfg.model_type
        pretrained = cfg.pretrained

        precision = cfg.get("precision", "fp32")

        return create_model(
            model_name=model_name, pretrained=pretrained, precision=precision
        )

    def zero_shot_predict(self, image_path, categories):
        assert isinstance(
            categories, list
        ), f"categories must be a list, got {type(categories)}."
        assert os.path.exists(image_path), f"File {image_path} does not exist."

        from lavis.processors.clip_processors import ClipImageEvalProcessor
        from PIL import Image

        image_preprocess = ClipImageEvalProcessor()
        image = image_preprocess(Image.open(image_path)).unsqueeze(0)

        text = self.tokenizer(categories)

        with torch.no_grad():
            image_features = self.encode_image(image)
            text_features = self.encode_text(text)
            image_features /= image_features.norm(dim=-1, keepdim=True)
            text_features /= text_features.norm(dim=-1, keepdim=True)

            text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

            print("Label probs:", text_probs)  # prints: [[1., 0., 0.]]

    def compute_sim_matrix(self, data_loader, **kwargs):
        logging.info("Computing features for evaluation...")
        start_time = time.time()

        texts = data_loader.dataset.text
        num_text = len(texts)
        text_bs = 256
        text_features = []

        for i in range(0, num_text, text_bs):

            text = texts[i : min(num_text, i + text_bs)]
            text_input = self.tokenizer(text).to(self.device)

            text_feat = self.encode_text(text_input)
            text_feat = F.normalize(text_feat, dim=-1)

            text_features.append(text_feat)

        text_features = torch.cat(text_features, dim=0)

        image_features = []
        for samples in data_loader:
            image = samples["image"]

            image = image.to(self.device)
            image_feat = self.encode_image(image)
            image_feat = F.normalize(image_feat, dim=-1)

            image_features.append(image_feat)

        image_features = torch.cat(image_features, dim=0)

        sims_matrix_i2t = image_features @ text_features.t()
        sims_matrix_t2i = sims_matrix_i2t.t()

        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        logging.info("Evaluation time {}".format(total_time_str))

        return sims_matrix_i2t.cpu().numpy(), sims_matrix_t2i.cpu().numpy()


def convert_weights_to_fp16(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [
                *[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
                "in_proj_bias",
                "bias_k",
                "bias_v",
            ]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()

        for name in ["text_projection", "proj"]:
            if hasattr(l, name):
                attr = getattr(l, name)
                if attr is not None:
                    attr.data = attr.data.half()

    model.apply(_convert_weights_to_fp16)


def build_model_from_openai_state_dict(state_dict: dict):
    vit = "visual.proj" in state_dict

    if vit:
        vision_width = state_dict["visual.conv1.weight"].shape[0]
        vision_layers = len(
            [
                k
                for k in state_dict.keys()
                if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
            ]
        )
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size = round(
            (state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5
        )
        image_size = vision_patch_size * grid_size
    else:
        counts: list = [
            len(
                set(
                    k.split(".")[2]
                    for k in state_dict
                    if k.startswith(f"visual.layer{b}")
                )
            )
            for b in [1, 2, 3, 4]
        ]
        vision_layers = tuple(counts)
        vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width = round(
            (state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5
        )
        vision_patch_size = None
        assert (
            output_width**2 + 1
            == state_dict["visual.attnpool.positional_embedding"].shape[0]
        )
        image_size = output_width * 32

    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len(
        set(
            k.split(".")[2]
            for k in state_dict
            if k.startswith(f"transformer.resblocks")
        )
    )

    vision_cfg = CLIPVisionCfg(
        layers=vision_layers,
        width=vision_width,
        patch_size=vision_patch_size,
        image_size=image_size,
    )
    text_cfg = CLIPTextCfg(
        context_length=context_length,
        vocab_size=vocab_size,
        width=transformer_width,
        heads=transformer_heads,
        layers=transformer_layers,
    )
    model = CLIP(
        embed_dim,
        vision_cfg=vision_cfg,
        text_cfg=text_cfg,
        quick_gelu=True,  # OpenAI models were trained with QuickGELU
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        state_dict.pop(key, None)

    convert_weights_to_fp16(model)
    model.load_state_dict(state_dict)
    return model.eval()


def trace_model(model, batch_size=256, device=torch.device("cpu")):
    model.eval()
    image_size = model.visual.image_size
    example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
    example_text = torch.zeros(
        (batch_size, model.context_length), dtype=torch.int, device=device
    )
    model = torch.jit.trace_module(
        model,
        inputs=dict(
            forward=(example_images, example_text),
            encode_text=(example_text,),
            encode_image=(example_images,),
        ),
    )
    model.visual.image_size = image_size
    return


def _natural_key(string_):
    return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]


def _rescan_model_configs():
    global _MODEL_CONFIGS

    config_ext = (".json",)
    config_files = []
    for config_path in _MODEL_CONFIG_PATHS:
        if config_path.is_file() and config_path.suffix in config_ext:
            config_files.append(config_path)
        elif config_path.is_dir():
            for ext in config_ext:
                config_files.extend(config_path.glob(f"*{ext}"))

    for cf in config_files:
        with open(cf, "r") as f:
            model_cfg = json.load(f)
            if all(a in model_cfg for a in ("embed_dim", "vision_cfg", "text_cfg")):
                _MODEL_CONFIGS[cf.stem] = model_cfg

    _MODEL_CONFIGS = {
        k: v
        for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
    }


_rescan_model_configs()  # initial populate of model config registry


def load_state_dict(checkpoint_path: str, map_location="cpu"):
    checkpoint = torch.load(checkpoint_path, map_location=map_location)
    if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
        state_dict = checkpoint["state_dict"]
    else:
        state_dict = checkpoint
    if next(iter(state_dict.items()))[0].startswith("module"):
        state_dict = {k[7:]: v for k, v in state_dict.items()}
    return state_dict


def create_model(
    model_name: str,
    pretrained: str = "",
    precision: str = "fp32",
    device: torch.device = torch.device("cpu"),
    jit: bool = False,
    force_quick_gelu: bool = False,
    pretrained_image: bool = False,
):
    model_name = model_name.replace(
        "/", "-"
    )  # for callers using old naming with / in ViT names

    if pretrained.lower() == "openai":
        logging.info(f"Loading pretrained {model_name} from OpenAI.")
        model = load_openai_model(model_name, device=device, jit=jit)
        # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
        if precision == "amp" or precision == "fp32":
            model = model.float()
    else:
        logging.info(f"No pretrained weights loaded for {model_name} model.")
        if model_name in _MODEL_CONFIGS:
            logging.info(f"Loading {model_name} model config.")
            model_cfg = deepcopy(_MODEL_CONFIGS[model_name])
        else:
            logging.error(
                f"Model config for {model_name} not found; available models {list_models()}."
            )
            raise RuntimeError(f"Model config for {model_name} not found.")

        if force_quick_gelu:
            # override for use of QuickGELU on non-OpenAI transformer models
            model_cfg["quick_gelu"] = True

        if pretrained_image:
            if "timm_model_name" in model_cfg.get("vision_cfg", {}):
                # pretrained weight loading for timm models set via vision_cfg
                model_cfg["vision_cfg"]["timm_model_pretrained"] = True
            else:
                assert (
                    False
                ), "pretrained image towers currently only supported for timm models"

        model = CLIP(**model_cfg)

        if pretrained:
            checkpoint_path = ""
            url = get_pretrained_url(model_name, pretrained)
            if url:
                checkpoint_path = download_pretrained(url)
            elif os.path.exists(pretrained):
                checkpoint_path = pretrained

            if checkpoint_path:
                logging.info(f"Loading pretrained {model_name} weights ({pretrained}).")
                model.load_state_dict(load_state_dict(checkpoint_path))
            else:
                logging.warning(
                    f"Pretrained weights ({pretrained}) not found for model {model_name}."
                )
                raise RuntimeError(
                    f"Pretrained weights ({pretrained}) not found for model {model_name}."
                )

        model.to(device=device)
        if precision == "fp16":
            assert device.type != "cpu"
            convert_weights_to_fp16(model)

        if jit:
            model = torch.jit.script(model)

    return model


def create_model_and_transforms(
    model_name: str,
    pretrained: str = "",
    precision: str = "fp32",
    device: torch.device = torch.device("cpu"),
    jit: bool = False,
    force_quick_gelu: bool = False,
    pretrained_image: bool = False,
):
    model = create_model(
        model_name,
        pretrained,
        precision,
        device,
        jit,
        force_quick_gelu=force_quick_gelu,
        pretrained_image=pretrained_image,
    )
    preprocess_train = image_transform(model.visual.image_size, is_train=True)
    preprocess_val = image_transform(model.visual.image_size, is_train=False)
    return model, preprocess_train, preprocess_val


def list_models():
    """enumerate available model architectures based on config files"""
    return list(_MODEL_CONFIGS.keys())


def add_model_config(path):
    """add model config path or file and update registry"""
    if not isinstance(path, Path):
        path = Path(path)
    _MODEL_CONFIG_PATHS.append(path)
    _rescan_model_configs()


def list_openai_models() -> List[str]:
    """Returns the names of available CLIP models"""
    return list_pretrained_tag_models("openai")


def load_openai_model(
    name: str,
    device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
    jit=True,
):
    """Load a CLIP model
    Parameters
    ----------
    name : str
        A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
    device : Union[str, torch.device]
        The device to put the loaded model
    jit : bool
        Whether to load the optimized JIT model (default) or more hackable non-JIT model.
    Returns
    -------
    model : torch.nn.Module
        The CLIP model
    preprocess : Callable[[PIL.Image], torch.Tensor]
        A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
    """
    if get_pretrained_url(name, "openai"):
        model_path = download_pretrained(get_pretrained_url(name, "openai"))
    elif os.path.isfile(name):
        model_path = name
    else:
        raise RuntimeError(
            f"Model {name} not found; available models = {list_openai_models()}"
        )

    try:
        # loading JIT archive
        model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
        state_dict = None
    except RuntimeError:
        # loading saved state dict
        if jit:
            warnings.warn(
                f"File {model_path} is not a JIT archive. Loading as a state dict instead"
            )
            jit = False
        state_dict = torch.load(model_path, map_location="cpu")

    if not jit:
        try:
            model = build_model_from_openai_state_dict(
                state_dict or model.state_dict()
            ).to(device)
        except KeyError:
            sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
            model = build_model_from_openai_state_dict(sd).to(device)

        if str(device) == "cpu":
            model.float()
        return model

    # patch the device names
    device_holder = torch.jit.trace(
        lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
    )
    device_node = [
        n
        for n in device_holder.graph.findAllNodes("prim::Constant")
        if "Device" in repr(n)
    ][-1]

    def patch_device(module):
        try:
            graphs = [module.graph] if hasattr(module, "graph") else []
        except RuntimeError:
            graphs = []

        if hasattr(module, "forward1"):
            graphs.append(module.forward1.graph)

        for graph in graphs:
            for node in graph.findAllNodes("prim::Constant"):
                if "value" in node.attributeNames() and str(node["value"]).startswith(
                    "cuda"
                ):
                    node.copyAttributes(device_node)

    model.apply(patch_device)
    patch_device(model.encode_image)
    patch_device(model.encode_text)

    # patch dtype to float32 on CPU
    if str(device) == "cpu":
        float_holder = torch.jit.trace(
            lambda: torch.ones([]).float(), example_inputs=[]
        )
        float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
        float_node = float_input.node()

        def patch_float(module):
            try:
                graphs = [module.graph] if hasattr(module, "graph") else []
            except RuntimeError:
                graphs = []

            if hasattr(module, "forward1"):
                graphs.append(module.forward1.graph)

            for graph in graphs:
                for node in graph.findAllNodes("aten::to"):
                    inputs = list(node.inputs())
                    for i in [
                        1,
                        2,
                    ]:  # dtype can be the second or third argument to aten::to()
                        if inputs[i].node()["value"] == 5:
                            inputs[i].node().copyAttributes(float_node)

        model.apply(patch_float)
        patch_float(model.encode_image)
        patch_float(model.encode_text)
        model.float()

    # ensure image_size attr available at consistent location for both jit and non-jit
    model.visual.image_size = model.input_resolution.item()
    return model


openai_imagenet_template = [
    lambda c: f"a bad photo of a {c}.",
    lambda c: f"a photo of many {c}.",
    lambda c: f"a sculpture of a {c}.",
    lambda c: f"a photo of the hard to see {c}.",
    lambda c: f"a low resolution photo of the {c}.",
    lambda c: f"a rendering of a {c}.",
    lambda c: f"graffiti of a {c}.",
    lambda c: f"a bad photo of the {c}.",
    lambda c: f"a cropped photo of the {c}.",
    lambda c: f"a tattoo of a {c}.",
    lambda c: f"the embroidered {c}.",
    lambda c: f"a photo of a hard to see {c}.",
    lambda c: f"a bright photo of a {c}.",
    lambda c: f"a photo of a clean {c}.",
    lambda c: f"a photo of a dirty {c}.",
    lambda c: f"a dark photo of the {c}.",
    lambda c: f"a drawing of a {c}.",
    lambda c: f"a photo of my {c}.",
    lambda c: f"the plastic {c}.",
    lambda c: f"a photo of the cool {c}.",
    lambda c: f"a close-up photo of a {c}.",
    lambda c: f"a black and white photo of the {c}.",
    lambda c: f"a painting of the {c}.",
    lambda c: f"a painting of a {c}.",
    lambda c: f"a pixelated photo of the {c}.",
    lambda c: f"a sculpture of the {c}.",
    lambda c: f"a bright photo of the {c}.",
    lambda c: f"a cropped photo of a {c}.",
    lambda c: f"a plastic {c}.",
    lambda c: f"a photo of the dirty {c}.",
    lambda c: f"a jpeg corrupted photo of a {c}.",
    lambda c: f"a blurry photo of the {c}.",
    lambda c: f"a photo of the {c}.",
    lambda c: f"a good photo of the {c}.",
    lambda c: f"a rendering of the {c}.",
    lambda c: f"a {c} in a video game.",
    lambda c: f"a photo of one {c}.",
    lambda c: f"a doodle of a {c}.",
    lambda c: f"a close-up photo of the {c}.",
    lambda c: f"a photo of a {c}.",
    lambda c: f"the origami {c}.",
    lambda c: f"the {c} in a video game.",
    lambda c: f"a sketch of a {c}.",
    lambda c: f"a doodle of the {c}.",
    lambda c: f"a origami {c}.",
    lambda c: f"a low resolution photo of a {c}.",
    lambda c: f"the toy {c}.",
    lambda c: f"a rendition of the {c}.",
    lambda c: f"a photo of the clean {c}.",
    lambda c: f"a photo of a large {c}.",
    lambda c: f"a rendition of a {c}.",
    lambda c: f"a photo of a nice {c}.",
    lambda c: f"a photo of a weird {c}.",
    lambda c: f"a blurry photo of a {c}.",
    lambda c: f"a cartoon {c}.",
    lambda c: f"art of a {c}.",
    lambda c: f"a sketch of the {c}.",
    lambda c: f"a embroidered {c}.",
    lambda c: f"a pixelated photo of a {c}.",
    lambda c: f"itap of the {c}.",
    lambda c: f"a jpeg corrupted photo of the {c}.",
    lambda c: f"a good photo of a {c}.",
    lambda c: f"a plushie {c}.",
    lambda c: f"a photo of the nice {c}.",
    lambda c: f"a photo of the small {c}.",
    lambda c: f"a photo of the weird {c}.",
    lambda c: f"the cartoon {c}.",
    lambda c: f"art of the {c}.",
    lambda c: f"a drawing of the {c}.",
    lambda c: f"a photo of the large {c}.",
    lambda c: f"a black and white photo of a {c}.",
    lambda c: f"the plushie {c}.",
    lambda c: f"a dark photo of a {c}.",
    lambda c: f"itap of a {c}.",
    lambda c: f"graffiti of the {c}.",
    lambda c: f"a toy {c}.",
    lambda c: f"itap of my {c}.",
    lambda c: f"a photo of a cool {c}.",
    lambda c: f"a photo of a small {c}.",
    lambda c: f"a tattoo of the {c}.",
]