Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import torch | |
import torch.nn.functional as F | |
from lavis.common.registry import registry | |
from lavis.models.base_model import tile | |
from lavis.models.blip_models.blip import BlipBase | |
from lavis.models.blip_models.blip_outputs import ( | |
BlipOutput, | |
BlipIntermediateOutput, | |
) | |
from lavis.models.med import XBertEncoder, XBertLMHeadDecoder | |
from lavis.models.vit import VisionTransformerEncoder | |
class BlipVQA(BlipBase): | |
""" | |
BLIP VQA models. | |
Supported model types: | |
- base: vqa model initialized with pre-trained BLIP base model on 115M image-text pairs after CapFilt; not fine-tuned. | |
- vqav2: fine-tuned BLIP base model on VQA v2.0 dataset. | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip_vqa", "vqav2") | |
>>> model = load_model("blip_vqa", "okvqa") | |
>>> model = load_model("blip_vqa", "aokvqa") | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"vqav2": "configs/models/blip_vqav2.yaml", | |
"okvqa": "configs/models/blip_vqa_okvqa.yaml", | |
"aokvqa": "configs/models/blip_vqa_aokvqa.yaml", | |
} | |
def __init__(self, image_encoder, text_encoder, text_decoder, max_txt_len=35): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.visual_encoder = image_encoder | |
self.text_encoder = text_encoder | |
self.text_decoder = text_decoder | |
self.max_txt_len = max_txt_len | |
def forward(self, samples): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480. | |
- text_input (list): A list of strings, each string is a question | |
- answer (list): A list of strings, each string is an answer | |
- weight (torch.Tensor): A tensor used to weigh each answer in the loss computation. | |
The shape of the tensor is (sum(n_answers),) | |
- n_answers (torch.Tensor): A tensor shape (batch_size,) containing the number of answers | |
for each question in the batch. | |
Returns: | |
A BlipOutput object containing loss and intermediate outputs, | |
see :class:`lavis.models.blip_outputs.BlipOutput` for more details. | |
Examples: | |
```python | |
>>> import torch | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip_vqa") | |
>>> samples = { | |
... "image": torch.rand(2, 3, 480, 480), | |
... "text_input": ["What is this?", "What is that?"], | |
... "answer": ["cat", "cat", "dog"], | |
... "weight": torch.tensor([1.0, 1.0, 1.0]), | |
... "n_answers": torch.tensor([2, 1]), | |
... } | |
>>> output = model(samples) | |
>>> output.keys() | |
odict_keys(['intermediate_output', 'loss']) | |
>>> output.intermediate_output.keys() | |
odict_keys(['image_embeds', 'encoder_output', 'decoder_output', 'decoder_labels']) | |
``` | |
""" | |
encoder_output, image_embeds = self.forward_encoder(samples) | |
loss, decoder_output, decoder_targets = self.forward_decoder( | |
samples=samples, encoder_out=encoder_output | |
) | |
return BlipOutput( | |
loss=loss, | |
intermediate_output=BlipIntermediateOutput( | |
image_embeds=image_embeds, | |
encoder_output=encoder_output, | |
decoder_output=decoder_output, | |
decoder_labels=decoder_targets, | |
), | |
) | |
def forward_encoder(self, samples): | |
questions = samples["text_input"] | |
questions = self.tokenizer( | |
questions, | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(self.device) | |
questions.input_ids[:, 0] = self.tokenizer.enc_token_id | |
samples.update({"tokenized_text": questions}) | |
image_embeds = self.visual_encoder.forward_features(samples["image"]) | |
encoder_output = self.text_encoder.forward_automask( | |
tokenized_text=samples["tokenized_text"], visual_embeds=image_embeds | |
) | |
return encoder_output, image_embeds | |
def forward_decoder(self, samples, encoder_out, **kwargs): | |
answers = self.tokenizer( | |
samples["answer"], padding="longest", return_tensors="pt" | |
).to(self.device) | |
answers.input_ids[:, 0] = self.tokenizer.bos_token_id | |
answer_targets = answers.input_ids.masked_fill( | |
answers.input_ids == self.tokenizer.pad_token_id, -100 | |
) | |
question_states = [] | |
question_atts = [] | |
question = samples["tokenized_text"] | |
question_output = encoder_out | |
for b, n in enumerate(samples["n_answers"]): | |
question_states += [question_output.last_hidden_state[b]] * n | |
question_atts += [question.attention_mask[b]] * n | |
question_states = torch.stack(question_states, dim=0) | |
question_atts = torch.stack(question_atts, dim=0) | |
answer_output = self.text_decoder( | |
answers.input_ids, | |
attention_mask=answers.attention_mask, | |
encoder_hidden_states=question_states, | |
encoder_attention_mask=question_atts, | |
labels=answer_targets, | |
return_dict=True, | |
reduction="none", | |
) | |
loss = samples["weight"] * answer_output.loss | |
bsz = samples["image"].size(0) | |
loss = loss.sum() / bsz | |
return loss, answer_output, answer_targets | |
def predict_answers( | |
self, | |
samples, | |
num_beams=3, | |
inference_method="rank", | |
max_len=10, | |
min_len=1, | |
num_ans_candidates=128, | |
answer_list=None, | |
**kwargs | |
): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). Default H=480, W=480. | |
- text_input (str or [str]): String or a list of strings, each string is a question. | |
The number of questions must be equal to the batch size. If a single string, will be converted to a list of string, with length 1 first. | |
num_beams (int): Number of beams for beam search. 1 means no beam search. | |
inference_method (str): Inference method. One of "rank", "generate". | |
- If "rank", the model will return answers with the highest probability from the answer list. | |
- If "generate", the model will generate answers. | |
max_len (int): Maximum length of generated answers. | |
min_len (int): Minimum length of generated answers. | |
num_ans_candidates (int): Number of answer candidates, used to filter out answers with low probability. | |
answer_list (list): A list of strings, each string is an answer. | |
Returns: | |
List: A list of strings, each string is an answer. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> from lavis.models import load_model_and_preprocess | |
>>> model, vis_processors, txt_processors = load_model_and_preprocess("blip_vqa", "vqav2") | |
>>> raw_image = Image.open("docs/data/merlion.png").convert("RGB") | |
>>> question = "Which city is this photo taken?" | |
>>> image = vis_processors["eval"](raw_image).unsqueeze(0) | |
>>> question = txt_processors["eval"](question) | |
>>> samples = {"image": image, "text_input": [question]} | |
>>> answers = model.predict_answers(samples) | |
>>> answers | |
['singapore'] | |
>>> answer_list = ["Singapore", "London", "Palo Alto", "Tokyo"] | |
>>> answers = model.predict_answers(samples, answer_list=answer_list) | |
>>> answers | |
['Singapore'] | |
``` | |
""" | |
assert inference_method in [ | |
"rank", | |
"generate", | |
], "Inference method must be one of 'rank' or 'generate', got {}.".format( | |
inference_method | |
) | |
if isinstance(samples["text_input"], str): | |
samples["text_input"] = [samples["text_input"]] | |
assert len(samples["text_input"]) == samples["image"].size( | |
0 | |
), "The number of questions must be equal to the batch size." | |
if inference_method == "generate": | |
return self._generate_answers( | |
samples, num_beams=num_beams, max_length=max_len, min_length=min_len | |
) | |
elif inference_method == "rank": | |
assert answer_list is not None, "answer_list must be provided for ranking" | |
num_ans_candidates = min(num_ans_candidates, len(answer_list)) | |
return self._rank_answers( | |
samples, answer_list=answer_list, num_ans_candidates=num_ans_candidates | |
) | |
def _generate_answers(self, samples, num_beams=3, max_length=10, min_length=1): | |
encoder_out, _ = self.forward_encoder(samples) | |
question_output = encoder_out | |
question_states = question_output.last_hidden_state.repeat_interleave( | |
num_beams, dim=0 | |
) | |
question_atts = torch.ones(question_states.size()[:-1], dtype=torch.long).to( | |
self.device | |
) | |
model_kwargs = { | |
"encoder_hidden_states": question_states, | |
"encoder_attention_mask": question_atts, | |
} | |
bsz = samples["image"].size(0) | |
bos_ids = torch.full( | |
(bsz, 1), fill_value=self.tokenizer.bos_token_id, device=self.device | |
) | |
outputs = self.text_decoder.generate( | |
input_ids=bos_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
**model_kwargs | |
) | |
# collect answers | |
answers = [] | |
for output in outputs: | |
answer = self.tokenizer.decode(output, skip_special_tokens=True) | |
answers.append(answer) | |
return answers | |
def _rank_answers(self, samples, answer_list, num_ans_candidates): | |
""" | |
Generate the first token of answers using decoder and select ${num_ans_candidates} | |
most probable ones. Then select answers from answer list, which start with the probable tokens. | |
Lastly, use the selected answers as the ground-truth labels for decoding and calculating LM loss. | |
Return the answers that minimize the losses as result. | |
""" | |
answer_candidates = self.tokenizer( | |
answer_list, padding="longest", return_tensors="pt" | |
).to(self.device) | |
answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id | |
answer_ids = answer_candidates.input_ids | |
answer_atts = answer_candidates.attention_mask | |
question_output, _ = self.forward_encoder(samples) | |
question_states = question_output.last_hidden_state | |
tokenized_question = samples["tokenized_text"] | |
question_atts = tokenized_question.attention_mask | |
num_ques = question_states.size(0) | |
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token | |
start_output = self.text_decoder( | |
start_ids, | |
encoder_hidden_states=question_states, | |
encoder_attention_mask=question_atts, | |
return_dict=True, | |
reduction="none", | |
) | |
logits = start_output.logits[:, 0, :] # first token's logit | |
# topk_probs: top-k probability | |
# topk_ids: [num_question, k] | |
answer_first_token = answer_ids[:, 1] | |
prob_first_token = F.softmax(logits, dim=1).index_select( | |
dim=1, index=answer_first_token | |
) | |
topk_probs, topk_ids = prob_first_token.topk(num_ans_candidates, dim=1) | |
# answer input: [num_question*k, answer_len] | |
input_ids = [] | |
input_atts = [] | |
for b, topk_id in enumerate(topk_ids): | |
input_ids.append(answer_ids.index_select(dim=0, index=topk_id)) | |
input_atts.append(answer_atts.index_select(dim=0, index=topk_id)) | |
input_ids = torch.cat(input_ids, dim=0) | |
input_atts = torch.cat(input_atts, dim=0) | |
targets_ids = input_ids.masked_fill( | |
input_ids == self.tokenizer.pad_token_id, -100 | |
) | |
# repeat encoder's output for top-k answers | |
question_states = tile(question_states, 0, num_ans_candidates) | |
question_atts = tile(question_atts, 0, num_ans_candidates) | |
output = self.text_decoder( | |
input_ids, | |
attention_mask=input_atts, | |
encoder_hidden_states=question_states, | |
encoder_attention_mask=question_atts, | |
labels=targets_ids, | |
return_dict=True, | |
reduction="none", | |
) | |
log_probs_sum = -output.loss | |
log_probs_sum = log_probs_sum.view(num_ques, num_ans_candidates) | |
max_topk_ids = log_probs_sum.argmax(dim=1) | |
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids] | |
answers = [answer_list[max_id] for max_id in max_ids] | |
return answers | |
def from_config(cls, cfg=None): | |
image_encoder = VisionTransformerEncoder.from_config(cfg) | |
# text encoder + multimodal encoder | |
text_encoder = XBertEncoder.from_config(cfg) | |
text_decoder = XBertLMHeadDecoder.from_config(cfg) | |
max_txt_len = cfg.get("max_txt_len", 35) | |
model = cls( | |
image_encoder=image_encoder, | |
text_encoder=text_encoder, | |
text_decoder=text_decoder, | |
max_txt_len=max_txt_len, | |
) | |
model.load_checkpoint_from_config(cfg) | |
return model | |